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Abstract. In this paper, we consider the general linear group
GL(2, 7) of 2× 2 invertible matrices over the finite field of order
7 and compute the unit group of the semisimple group alge-
bra FqGL(2, 7), where Fq is a finite field. For the computation
of the unit group, we need the Wedderburn decomposition of
FqGL(2, 7), which is determined by first computing the Wedder-
burn decomposition of the group algebra Fq(PSL(3, 2) o C2).
Here PSL(3, 2) is the projective special linear group of degree 3
over a finite field of 2 elements.
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1 Introduction

Let U(FqG) be the group of units of the group algebra FqG of the finite group
G over the finite field Fq of cardinality q = pk, where p is the characteristic of
Fq and k ≥ 1. The structure of unit group of the group algebra has inevitably
developed into a significant area of research owing to the applications of the
units in many fields, including convolutional codes [13], cryptography [14,19],
etc. In addition to this, the recent counterexample to the renowned Kaplan-
sky’s unit conjecture further emphasizes the need of research in this area
(see [11]). It has been extensively investigated how the unit group of the
group algebra FqG is structured (see [1,3,4,16–18,20,21,23,25,27,28]). Fur-
thermore, there have been significant developments in the exploration of the
unit group of modular group algebras, in addition to integral and semisim-
ple group algebras (see [5–8] and the references therein for a comprehensive
and recent literature in this direction). One of the most important studies
in this area examines the unit groups of the semisimple group algebras of
all metabelian groups (see [4]). As a result, the majority of research in this
area concentrates on the comprehension of the unit group of non-metabelian
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group algebras. We recall that a group is non-metabelian if its derived sub-
group is non-abelian.

As of order 120, Mittal et al. [20] described the unit groups of the group
algebras of non-metabelian groups. Further, Sharma et al. [15,24] identified
the unit group of the semisimple group algebra for the special linear groups
SL(2, 3) and SL(2, 5). Sivaranjani et al. [27] studied the unit group of the
semisimple group algebra for the special linear groups SL(2, 8) and SL(2, 9).
The unit group of the semisimple group algebra for the general linear group
GL(2, 3) is studied in [20]. Further, we note that the groups GL(2,Z4) and
GL(2, 6) are, respectively, isomorphic to the direct product of A5 and C3 and
direct product of GL(2, 3) and S3. Consequently, the unit group of their
associated group algebras can be easily characterized by using the tensor
product formula (see [22]). Furthermore, Sivaranjani et al. [26] determined
the unit group of the semisimple group algebra of the group GL(2, 5).

In this paper, in continuation with the previous works, we determine
the unit group of the semisimple group algebra of the group GL(2, 7). As
usual, to compute the unit group, we study the Wedderburn decomposition
of the group algebra FqGL(2, 7). It is important to note that we need the
Wedderburn decomposition of the group algebra Fq(PSL(3, 2) o C2) for
computing the Wedderburn decomposition of FqGL(2, 7). Here PSL(3, 2)
is the projective special linear group of degree 3 over a finite field of 2
elements. Finally, the unit group can be easily derived from the Wedderburn
decomposition.

The paper is organized as follows. Section 2 covers the prerequisites.
The main results of the paper appear in Section 3. Section 4 concludes the
paper.

2 Preliminaries

Throughout this paper, GL(n, p) denotes the general linear group of n × n
invertible matrices over the field Zp, where p is a prime. The order of the
general linear group GL(n, p) is given by

(pn − 1)(pn − p) · · · (pn − pn−1). (1)

It follows from (1) that the order of GL(2, 7) is 2016.
Next, we discuss some notations and results from [9]. Let J(FqG) denote

the Jacobson radical of FqG. Let s be the exponent of the group G, i.e., the
l.c.m of the order of p regular element, and let η be the primitive sth root of
unity over a finite field F. Put

TG,F = {t ∈ Z+ : η → ηt is an automorphism of F(η) over F}.

Since the Galois group Gal(F(η) : F) is cyclic, for any σ ∈ Gal(F(η) : F),
there exists a postive integer s such that σ(η) = ηs. For any p-regular
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element g ∈ G (i.e., p does not divide order of g), we define γg =
∑
h, where

h runs over all the elements in the conjugacy class Cg of g. The cyclotomic
F-class of γg is defined as SF(γg) = {γgt | t ∈ TG,F}.

The following theorem characterizes the set TG,F.

Theorem 2.1 [20, Theorem 2.3] Let F be a finite field with prime power
order d such that gcd(d, s) = 1 and e = orders(d) is the multiplicative order
of d modulo s. Then TG,F = {1, d, ..., de−1} mod s.

To uniquely identify the Wedderburn decomposition (WD) of the group
algebra, the following six results will play an important role.

Proposition 2.1 [9, Proposition 1.2] The number of non-isomorphic sim-
ple components of FG/J(FG) is equal to the number of cyclotomic F-classes
in G.

Theorem 2.2 [9, Theorem 1.3] Assume G has t cyclotomic F-classes and
Gal(F(η) : F)) is a cyclic group. Then |Si| = [Fi : F] with appropriate index
ordering if S1, S2, · · · , St are the cyclotomic F-classes of G and F1,F2, · · · ,Ft

are the simple components of Z (FG/J(FG)).

Proposition 2.2 [18, Proposition 3.6.11] Let G′ be the commutator sub-
group of G and let FG be a semisimple group algebra. Then

FG ' F(G/G′)⊕4(G,G′),

where F(G/G′) is the sum of all commutative simple components of FG and
4(G,G′) is the sum of all others.

Proposition 2.3 [18, Proposition 3.6.7] Let N be a normal subgroup of G
and let FG be a semisimple group algebra. Then

FG ' F(G/N)⊕4(G,N),

where 4(G,N) is an ideal of FG generated by the set {n− 1 : n ∈ N}.

Lemma 2.1 [27, Lemma 2.7] Let p1 and p2 be two primes. Let Fq1 be a
field with q1 = pk11 elements and let Fq2 be a field with q2 = pk22 elements,
where k1, k2 ≥ 1. Let both the group algebras Fq1G and Fq2G be semisimple.
Suppose that

Fq1G
∼= ⊕t

i=1M(ni,Fq1), ni ≥ 1

and M
(
n,Fqr2

)
is a Wedderburn component of the group algebra Fq2G for

some r ≥ 1 and any positive integer n, i.e.,

Fq2G
∼= ⊕s−1

i=1M(mi,Fq2,i)⊕M(n,Fqr2
), mi ≥ 1,

where Fq2,i is a field extension of Fq2. Then M (n,Fq1) must be a Wedderburn
component of the group algebra Fq1G, and it appears at least r times in the
WD of Fq1G.
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Proposition 2.4 [2, Corollary 3.8] Let FG be a finite semisimple group
algebra, where characteristics of F is p. If there exists an irreducible repre-
sentations of degree n over F, then one of the Wedderburn component of FG
is M(n,F).

3 Unit group of the group algebra FqGL(2, 7)
The general linear group of 2 × 2 matrices over the finite field of order 7
is denoted by G (i.e., G = GL(2, 7)). Clearly, |G| = 2016. According to
Maschke’s theorem [18], the group algebra FqG is semisimple for p 6= 2, 3, 7.
Additionally, it can be seen from [12] that G has irreducible representations
of the degrees 1, 6, 7 and 8 whenever | SFq(γg) |= 1 for all g ∈ G. In order
to determine the Wedderburn decomposition (WD) of the group algebra
FqG, we will first look at the unit group of the group algebra FqN , where
N = PSL(3, 2) o C2, in the following subsection. Later on, we show that
one of the factor subgroups of G is isomorphic to N and use the WD of FqN
to compute that of FqG.

3.1 WD of the group algebra FqN , N = PSL(3, 2) o C2

One can note that the order of N is 336. In this section, we characterize
the unit group of the group algebra FqN for p 6= 2, 3, 7 such that the group
algebra FqN is semisimple and q = pk. The presentation of N is as follows
(we use the notation [r, s] = r−1s−1rs):

〈x, y, z
∣∣ x2(z−1y−1)4zy−1z−1, x−1yx(zy−1z−1y−1)2z−1(y−1z)2,

x−1zx(z−1y−1)4zy−1, y2, z3, (yz)7, (y−1z−1yz)4〉.

Further, using GAP [10], we note that N has 9 conjugacy classes as shown
in the table below.

R e x5 x4 x3 xzx x2y x3zx2y zx2y xzx2y
S 1 56 56 28 48 21 42 42 42
O 1 6 3 2 7 2 8 4 8

Here, R, S and O denote the representative, size and order of conjugacy
classes, respectively. The above discussion clearly indicates that the expo-
nent of N is 168. Let Fi denote the finite extensions of Fq and let ni, r be
positive integers.

Theorem 3.1 The WD of FqN , where q = pk and p 6= 2, 3, 7, is given as
follows:
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(1) for pk ≡ {1, 17, 23, 25, 31, 41, 47, 55, 65, 71, 73, 79, 89, 95, 97, 103, 113, 121,
127, 137, 143, 145, 151, 167} mod 168, we have

FqN ' F2
q ⊕M(6,Fq)

3 ⊕M(7,Fq)
2 ⊕M(8,Fq)

2;

(2) for pk ≡ {5, 11, 13, 19, 29, 37, 43, 53, 59, 61, 67, 83, 85, 101, 107, 109, 115,
125, 131, 139, 149, 155, 157, 163} mod 168, we have

FqN ' F2
q ⊕M(6,Fq)⊕M(7,Fq)

2 ⊕M(8,Fq)
2 ⊕M(6,Fq2).

Proof. The group algebra FqN is semisimple. Hence, it follows from the
Weddurburn-Artin theorem (see [18]) that FqN ' ⊕r

i=1M(ni,Fi). The de-
rived subgroup of the group N is PSL(3, 2) and the quotient group is C2.
Along with Proposition 2.2, this gives

FqN ' F2
q

r−2⊕
i=1

M(ni,Fi), ni ≥ 2. (2)

The proof is split into the following two cases using Theorem 2.1.
Case 1: pk ≡ {1, 17, 23, 25, 31, 41, 47, 55, 65, 71, 73, 79, 89, 95, 97, 103, 113, 121,
127, 137, 143, 145, 151, 167} mod 168. The cardinality of the cyclotomic Fq-
class of γg in this case is 1 for every g in N . Using this along with Proposition
2.1 and Theorem 2.2, we rewrite (2) as

FqN ' F2
q

7⊕
i=1

M(ni,Fq),

and hence,

334 =
7∑

i=1

n2
i , ni ≥ 2. (3)

Since we know that one of the factor subgroups of G is isomorphic to N ,
Proposition 2.3 confirms that in (3) ni ≥ 6 for every i (this holds because
G has irreducible representations of the degrees 1, 6, 7 and 8 whenever
| SFq(γg) |= 1 for all g ∈ G). Consequently, we are remaining with a unique
choice given by (6, 6, 6, 7, 7, 8, 8) for ni’s. Hence, the WD is

FqN ' F2
q ⊕M(6,Fq)

3 ⊕M(7,Fq)
2 ⊕M(8,Fq)

2.

Case 2: pk ≡ {5, 11, 13, 19, 29, 37, 43, 53, 59, 61, 67, 83, 85, 101, 107, 109, 115,
125, 131, 139, 149, 155, 157, 163} mod 168. In this case, the cyclotomic Fq

classes of γg are

SFq(γgi) = {γgi} for i = 1, . . . , 6, 8, SFq(γg7) = {γg7 , γg9}.
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Applying Proposition 2.1, we derive from (2) that

FqN ' F2
q

5⊕
i=1

M(ni,Fq)⊕M(n6,Fq2),

and hence,

334 =
5∑

i=1

n2
i + 2n2

6, ni ≥ 2. (4)

According to Lemma 2.1, it is clear that in (4), ni ≥ 6 for every i.
There are 3 choices for ni’s given by (6, 6, 6, 7, 7, 8), (6, 6, 6, 8, 8, 7) and

(6, 7, 7, 8, 8, 6). To deduce the unique choice, we explicitly take p = 5 and k =
1. Further, we note that the group N is isomorphic to the group generated
by permutations 〈a, b〉, where a = (3, 8, 7, 6, 5, 4) and b = (1, 2, 6)(3, 4, 8).
Next, we consider the map Ψ : N → GL(7, 5) given as follows:

a→



1 0 4 4 1 1 0
0 1 0 0 0 0 4
0 0 4 4 0 0 0
0 0 1 1 0 0 4
0 0 0 1 0 0 4
0 0 0 0 1 0 4
0 0 0 0 0 1 4


, b→



4 3 2 2 1 2 1
0 0 4 4 0 1 0
0 0 0 1 0 0 0
0 0 4 4 0 0 0
0 0 4 4 1 0 0
2 0 3 4 4 1 4
0 0 4 4 0 0 1


.

Clearly, this map is an irreducible representation of N of degree 7 over F5,
i.e., Ψ is a group homomorphism from N to GL(7, 5) and Ψ is irreducible,
that is there is no matrix U ∈ GL(7, 5) such that

U−1Ψ(g)U =

[
A(g) B(g)

0 C(g)

]
for all g ∈ N,

where A(g), B(g) and C(g) are square matrices with entries from F5 de-
pending on g. Therefore, Proposition 2.4 implies that M(7,F5) must appear
in WD of F5N . Thus, we are remaining with only two possibilities of ni’s
is given by (6, 6, 6, 7, 7, 8) and (6, 7, 7, 8, 8, 6). For uniqueness, we again con-
sider a map from N → GL(8, 5) given as follows:

a→



0 0 2 0 1 3 3 2
0 4 4 1 4 4 4 4
2 0 1 3 2 1 2 1
0 0 0 3 2 1 2 3
0 4 1 4 1 0 0 4
1 0 1 3 3 3 0 1
1 4 3 1 1 1 4 2
4 0 0 1 0 1 0 0


, b→



3 4 3 2 4 2 1 2
4 3 2 0 3 0 4 3
2 4 2 4 2 1 1 4
2 3 3 3 2 4 0 4
4 2 3 2 0 2 0 3
0 0 4 2 2 3 2 3
2 3 4 4 1 4 1 3
0 0 2 1 4 4 0 4


.
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This means that M(8,F5) must appear in WD of F5N . Consequently, the
unique choice of ni’s is (6, 7, 7, 8, 8, 6). Thus, the WD of FqN is

FqN ' F2
q ⊕M(6,Fq)⊕M(7,Fq)

2 ⊕M(8,Fq)
2 ⊕M(6,Fq2).

This completes the proof. �

3.2 WD of the group algebra FqG

In this section, we determine the WD of the group algebra FqG, where
G = GL(2, 7). Using GAP [10], it can be noted that G has 48 conjugacy
classes. Let us denote these classes by [gi], 1 ≤ i ≤ 48, where for each i, gi
is the representative of the ith conjugacy class. Using GAP, we observe that
(i) g1, g3, g5, g7, g9, g11 are the only elements in their conjugacy classes. More-
over, |g1| = 1, |g7| = 2, |g5| = |g9| = 6, |g3| = |g11| = 3.
(ii) Each of g2, g4, g6, g8, g10, g12 contains 48 elements in their conjugacy
classes. Moreover, |g2| = 14, |g4| = |g12| = 21, |g6| = |g10| = 42, |g8| = 7.
(iii) Each of g13, g14, . . . , g33 have 42 elements in their conjugacy classes.
Moreover, |g13| = 4, |g14| = |g15| = 8, |gi| = 48 for i = 16, 17, 18, 19, 30, 31, 32,
33, |g20| = |g27| = 12, |g21| = |g22| = |g28| = |g29| = 24, |gi| = 16 for
i = 23, 24, 25, 26.
(iv) Each of g34, g35, . . . , g48 contains 56 elements in their conjugacy classes.
Moreover, |g34| = 6 for i = 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 48, |g36| = 2,
|g40| = |g42| = |g47| = 3.

It is clear that the exponent of G is 336. In the following theorem, we
determine the WD of the group algebra FqG for p 6= 2, 3, 7 and q = pk.

Theorem 3.2 The WD of FqG is as follows:
(1) for pk ≡ {1, 55, 97, 103, 145, 151, 193, 199, 241, 247, 289, 295} mod 336,
we have

FqG ' F6
q ⊕M(6,Fq)

21 ⊕M(7,Fq)
6 ⊕M(8,Fq)

15;

(2) for pk ≡ {5, 11, 29, 53, 59, 83, 101, 107, 125, 131, 149, 155, 173, 179, 197, 221,
227, 251, 269, 275, 293, 299, 317, 323} mod 336, we have

FqG ' F2
q ⊕ F2

q2 ⊕M(6,Fq)⊕M(7,Fq)
2 ⊕M(8,Fq)

3 ⊕M(6,Fq2)
4

⊕M(7,Fq2)
2 ⊕M(8,Fq2)

6 ⊕M(6,Fq4)
3;

(3) for pk ≡ {13, 19, 37, 43, 61, 67, 85, 109, 115, 139, 157, 163, 181, 205, 211, 229,
235, 253, 277, 283, 307, 325, 331} mod 336, we have

FqG ' F6
q ⊕M(6,Fq)

3 ⊕M(7,Fq)
6 ⊕M(8,Fq)

15 ⊕M(6,Fq2)
3 ⊕M(6,Fq4)

3;

(4) for pk ≡ {17, 23, 65, 71, 113, 167, 209, 215, 257, 263, 305, 311} mod 336,
we have

FqG ' F2
q ⊕ F2

q2 ⊕M(6,Fq)
7 ⊕M(7,Fq)

2 ⊕M(8,Fq)
3
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⊕M(6,Fq2)
7 ⊕M(7,Fq2)

2 ⊕M(8,Fq2)
6;

(5) for pk ≡ {25, 31, 73, 79, 121, 127, 169, 223, 265, 271, 313, 319} mod 336,
we have

FqG ' F6
q ⊕M(6,Fq)

9 ⊕M(7,Fq)
6 ⊕M(8,Fq)

15 ⊕M(6,Fq2)
6;

(6) for pk ≡ {41, 47, 89, 95, 137, 143, 185, 191, 233, 239, 281, 335} mod 336,
we have

FqG ' F2
q ⊕ F2

q2 ⊕M(6,Fq)
3 ⊕M7,Fq)

2 ⊕M(8,Fq)
3

⊕M(6,Fq2)
9 ⊕M(7,Fq2)

2 ⊕M(8,Fq2)
6.

Proof. The group algebra FqG is semisimple. Therefore, it follows from
the Wedderburn-Artin theorem that FqG ' ⊕r

i=1M(ni,Fi). Also, it is well
known that the derived subgroup of G is SL(2, 7), and the factor group is
isomorphic to C6. Along with Proposition 2.2 this gives

FqG ' F6
q

r−6⊕
i=1

M(ni,Fi), ni ≥ 2, or FqG ' F2
q ⊕ F2

q2

r−6⊕
i=1

M(ni,Fi), ni ≥ 2.

(5)
The proof is further divided into the following 6 cases, same like with the
previous theorem, using the set TG,Fq of group G.
Case 1: pk ≡ {1, 55, 97, 103, 145, 151, 193, 199, 241, 247, 289, 295} mod 336.
In this case, it can be verified that | SFq(γg) |= 1 for all g ∈ G. Using this
along with Proposition 2.1, we obtain from (5) that

FqG ' F6
q

42⊕
i=1

M(ni,Fq),

and hence,

2010 =
42∑
i=1

n2
i , ni ≥ 2. (6)

At the outset of this section, we discussed that there are no irreducible
representations of G with degrees 2, 3, 4 and 5 whenever | SKq(γg) |= 1
for all g ∈ G. Also, G has no irreducible representations of degree strictly
greater than 8. Therefore, in (6), 8 ≥ ni ≥ 6, i = 1, 2, . . . 41.

To uniquely identify the value of ni’s, we take into account the normal

subgroup N = 〈n〉 of G, where n =

[
6 0
0 6

]
. We note that the factor group

G/N ∼= C3 × (PSL(3, 2) o C2). Using part (1) of Theorem 3.1 along with
the property of tensor products (see [22]), we derive that

Fq(G/N) ' F6
q ⊕M(6,Fq)

9 ⊕M(7,Fq)
6 ⊕M(8,Fq)

6. (7)
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Substituting (7) in (6) and using Proposition 2.3, we obtain

FqG ' F6
q ⊕M(6,Fq)

9 ⊕M(7,Fq)
6 ⊕M(8,Fq)

6

21⊕
i=1

M(ni,Fq),

and therefore,

1008 =
21∑
i=1

n2
i ,

where 8 ≥ ni ≥ 6, i = 1, 2, . . . , 21. To this end, we are left with only one
choice (612, 89). Hence, the WD is

FqG ' F6
q ⊕M(6,Fq)

21 ⊕M(7,Fq)
6 ⊕M(8,Fq)

15.

Case 2: pk ≡ {5, 11, 29, 53, 59, 83, 101, 107, 125, 131, 149, 155, 173, 179, 197, 221,
227, 251, 269, 275, 293, 299, 317, 323} mod 336. The cyclotomic Fq classes of
γg are

SFq(γgi) = {γgi} for i = 1, 2, 7, 8, 13, 36, 42, 44,
SFq(γgi) = {γgi , γgi+8

} for i = 3, 4, 21, 39,
SFq(γgi) = {γgi , γgi+4

} for i = 5, 6, 34, 41,
SFq(γgi) = {γgi , γgi+7

} for i = 20, 40,
SFq(γg14) = {γg14 , γg15}, SFq(γg22) = {γg22 , γg28}, SFq(γg35) = {γg35 , γg37},

SFq(γg17) = {γg17 , γg19 , γg33 , γg31}, SFq(γg23) = {γg23 , γg24 , γg25 , γg26},
SFq(γg43) = {γg43 , γg46}, SFq(γg16) = {γg16 , γg18 , γg30 , γg32}.

Applying Propositions 2.1, 2.2 and Theorem 2.2, we derive from (5) that

FqG ' F2
q ⊕ F2

q2

6⊕
i=1

M(ni,Fq)
18⊕
i=7

M(ni,Fq2)
21⊕

i=19

M(ni,Fq4),

and therefore,

2010 =
6∑

i=1

n2
i + 2

18∑
i=7

n2
i + 4

21∑
i=19

n2
i , ni ≥ 2. (8)

We consider the same normal subgroup as considered in Case 1 and observe
that the WD of Fq(G/N) in this case is

Fq(G/N) ' F2
q ⊕ F2

q2 ⊕M(6,Fq)⊕M(6,Fq2)
4 ⊕M(7,Fq)

2

⊕M(7,Fq2)
2 ⊕M(8,Fq)

2 ⊕M(8,Fq2)
2.

(9)

Using (8), (9) and Proposition 2.3, we further derive that

FqG ' F2
q ⊕ F2

q2 ⊕M(6,Fq)⊕M(6,Fq2)
4 ⊕M(7,Fq)

2 ⊕M(7,Fq2)
2

⊕M(8,Fq)
2 ⊕M(8,Fq2)

2 ⊕M(n1,Fq)
5⊕

i=2

M(ni,Fq2)
8⊕

i=6

M(ni,Fq4)
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with

1008 = n2
1 +

5∑
i=2

2n2
i +

8∑
i=6

4n2
i , ni ≥ 2. (10)

In accordance with Lemma 2.1 and Case 1 in (10), we must have 6 ≤
ni ≤ 8 for all i = 1, 2, . . . , 8. Thus, we are remaining with 3 choices of ni’s
given by (8, 65, 82), (8, 62, 82, 62, 8) and (85, 63). We explicitly take p = 5
and k = 1. With these parameters, M(6,F54) contains a subgroup isomor-
phic to GL(2, 7), whereas M(8,F54) does not contain any such subgroup.
Consequently, the required choice of ni’s is (85, 63). Hence, we get

FqG ' F2
q ⊕ F2

q2 ⊕M(6,Fq)⊕M(7,Fq)
2 ⊕M(8,Fq)

3 ⊕M(6,Fq2)
4

⊕M(7,Fq2)
2 ⊕M(8,Fq2)

6 ⊕M(6,Fq4)
3.

Case 3: pk ≡ {13, 19, 37, 43, 61, 67, 85, 109, 115, 139, 157, 163, 181, 205, 211,
229, 235, 253, 277, 283, 307, 325, 331} mod 336. Similar to the previous case,
we note that 30 cyclotomic classes of γg, g ∈ G have single elements in their
classes, 3 cyclotomic classes have two elements in their classes and the rest
3 have four elements. Applying Proposition 2.1 and Theorem 2.2, we derive
from (5)

FqG ' F6
q

24⊕
i=1

M(ni,Fq)
27⊕

i=25

M(ni,Fq2)
30⊕

i=28

M(ni,Fq4),

and hence,

2010 =
24∑
i=1

n2
i + 2

27∑
i=25

n2
i + 4

30∑
i=28

n2
i , ni ≥ 2. (11)

In this case, we have

Fq(G/N) ' F6
q ⊕M(6,Fq)

3 ⊕M(6,Fq2)
3 ⊕M(7,Fq)

6 ⊕M(8,Fq)
6. (12)

Using (12), (11) and Proposition 2.3, we further derive

FqG ' F6
q ⊕M(6,Fq)

3 ⊕M(6,Fq2)
3 ⊕M(7,Fq)

6 ⊕M(8,Fq)
6

9⊕
i=1

M(ni,Fq)
12⊕

i=10

M(ni,Fq4)
(13)

with

1008 =
9∑

i=1

n2
i + 4

12∑
i=10

n2
i , ni ≥ 2. (14)

In accordance with Lemma 2.1 and Case 1 in (14), we must have 6 ≤
ni ≤ 8, i = 1, 2, . . . 12. This leaves us with the following three choices for
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the values of ni’s: (68, 8, 6, 82), (64, 85, 62, 8) and (89, 63). Further, as in
Case 2 of Theorem 3.1, one can show that there are more than 5 irreducible
representations of G of degree 8 over F13. This shows that the final choice
of ni’s is (89, 63). Hence, (13) implies that the WD is

FqG ' F6
q ⊕M(6,Fq)

3 ⊕M(7,Fq)
6 ⊕M(8,Fq)

15 ⊕M(6,Fq4)
3.

Case 4: pk ≡ {17, 23, 65, 71, 113, 167, 209, 215, 257, 263, 305, 311} mod 336.
This case can be done similarly to Case 2 (or Case 3). The WD in this case
is

FqG ' F2
q ⊕ F2

q2 ⊕M(6,Fq)
7 ⊕M(7,Fq)

2 ⊕M(8,Fq)
3 ⊕M(6,Fq2)

7

⊕M(7,Fq2)
2 ⊕M(8,Fq2)

6.

Case 5: pk ≡ {25, 31, 73, 79, 121, 127, 169, 223, 265, 271, 313, 319} mod 336.
Applying similar to Case 3 reasoning, we get

FqG ' F6
q ⊕M(6,Fq)

9 ⊕M(7,Fq)
6 ⊕M(8,Fq)

15 ⊕M(6,Fq2)
6.

Case 6: pk ≡ {41, 47, 89, 95, 137, 143, 185, 191, 233, 239, 281, 335} mod 336.
The WD in this case is

FqG ' F2
q ⊕ F2

q2 ⊕M(6,Fq)
3 ⊕M(7,Fq)

2 ⊕M(8,Fq)
3 ⊕M(6,Fq2)

9

⊕M(7,Fq2)
2 ⊕M(8,Fq2)

6,

which can be shown analogously to the previous cases. This completes the
proof. �

It is straightforward to compute the unit group of FqG from Theorem 3.2.

4 Conclusion

In this paper, we computed the unit group for the semisimple group algebra
of the group GL(2, 7). For this, we calculated the Wedderburn decomposi-
tion of the group algebra by using the results from the classical theory of
group algebras. It is clear that as the group size increases, it becomes diffi-
cult to characterize the Wedderburn decomposition due to the large range of
potential Wedderburn components. The study motivates the determination
of the unit group of groups algebras of the general linear groups of higher
order by discovering new techniques to reduce the large range of potential
Wedderburn components.

Acknowledgements. The authors are very thankful to the anonymous
reviewer for constructive comments and suggestions that significantly helped
improve the paper.
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