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Abstract. We investigate {left, right, middle} units of quasi-
groups and families of identities which might imply their ex-
istence. A prominent role is played by the newly introduced
notion of derivative operation, generalizing Belousov’s notions
of left/right derivative operations for quasigroups. Partial solu-
tions of the Belousov’s Problem # 18 and its generalizations are
obtained. Several related problems remain open.
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Introduction

One of the 20 problems V.D. Belousov posed in his book [3] is the following:

Problem 1 (Belousov’s Problem #18) How to recognize identities which
force quasigroups satisfying them to be loops?

An example of such an identity is the identity of associativity. Even some
weak forms of associativity give us solutions of Problem 1, as suggested by
the following result [13]:

Theorem 1 For any quasigroup Q the following properties are equivalent:

1. Q is a loop;

2. In the quasigroup Q the following equalities are valid:
fxfx = fx , exex = e , ex · fyfy = exfy · fy
for all x, y ∈ Q, where ex(fx) is right (left) local unit for x;

3. In the quasigroup Q the following equalities are valid:
fxfx = fx , exex = e , fx · eyey = fxey · ey
for all x, y ∈ Q, where ex(fx) is right (left) local unit for x.
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In general, we only have partial answers for Problem 1. If in a quasi-
group one of the middle Moufang identities holds, then this quasigroup is a
loop [16]. If in a quasigroup any of the Moufang identities holds, then this
quasigroup is a Moufang loop [9, 16]. Quasigroups with identities from the
Fenyves’ list [6] are studied in several articles, in particular [10] and [15].

In [7] N. C. Fiala investigated quasigroup identities related to Belousov’s
Problem # 18. He obtained the following result: There are exactly 35 quasi-
group identities (in the language with the product operation only) with at
most six variable occurrences which imply that the quasigroup is necessarily
a non-trivial loop or group. Additional information in this direction is given
in [8].

We formulate a slight generalization of Belousov’s Problem:

Problem 2 How to recognize identities which force quasigroups satisfying
them to have {left, right, middle} unit? (See page 5)

All of the above examples are also solutions of some versions of Problem 2,
but there are new solutions as well. The classic example of left (right) Bol
quasigroup, which has right (left) unit, is probably the best known. Several
examples can be found in [15] and some are shown in Theorem 4 (page 7)
which generalizes the result by J. D. H. Smith [17, Proposition 1.3].

The rest of the paper is dedicated to the construction of the family
of identities which gives a partial solution of Problem 2, using so called
derivatives.

For the most part this paper is about quasigroups. However, there are
a few minor and one major exceptions to this. The minor ones are in Sec-
tions 1 and 2, where we occasionally consider algebras more general than
quasigroups. The major exception concerns derivative operations, where we
define derivatives for groupoids (and homotopies), with the consequence that
we have new and interesting existence and uniqueness problems for them.
We give a few easy results, leaving harder problems for another occasion.
Here we concentrate on quasigroups as an appropriate and more useful case
for our present purpose.

1 Preliminaries

Quasigroups may be defined in several ways. We give two definitions which
are the most common. One is to consider them as special groupoids (Q;A) in
which linear equations A(x, a) = b and A(a, y) = b are uniquely solvable for
x, y (for any given a, b). The other way is to define quasigroups as algebras
with three binary operations A,A−1, −1A.
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Definition 1 A quasigroup is an algebra (Q;A,A−1, −1A) which satisfies
the following identities:

A−1(x,Ax, y)) = y −1A(A(x, y), y) = x
A(x,A−1(x, y)) = y A(−1A(x, y), y) = x

The later type is sometimes called primitive, equational or equasigroup,
but because there is a bijection between the two kinds of quasigroups, we
shall call them just quasigroups. However, it is important to note that the
two kinds of quasigroups have different properties. For example, homomor-
phic images of quasigroups as groupoids need not be quasigroups themselves,
while with 3–operation quasigroups this is always the case. These and other
basic facts about quasigroups can be found in [3, 5, 14].

Definition 2 Parastrophes Aσ (σ ∈ S3) of a binary operation A are defined
by

Aσ(xσ(1), xσ(2)) = xσ(3) iff A(x1, x2) = x3

By default: Aε = A. Usually, the operations A(12), A(13), A(23) are denoted
by A∗, −1A and A−1 respectively, as in the above quasigroup axioms.

It is easy to see that any groupoid (Q;A) has the parastrophe (Q;A∗),
so called dual of (Q;A). The other parastrophes of an arbitrary operation
need not exist. For the existence of A(13) (A(23)), the operation A needs to
be right (respectively left) quasigroup, and then A(13) (A(23)) is also a right
(left) quasigroup. Consequently, every parastrophe of a quasigroup is also a
quasigroup.

When we use multiplicative notation, i.e. when · is a binary infix opera-
tion symbol, we also use the following customary symbols for it’s parastro-
phes:

∗ = ·(12), / = ·(13), \ = ·(23), // = ·(123), \\ = ·(132)

or explicitly:

x · y = z iff x\z = y iff z/y = x iff
y ∗ x = z iff z\\x = y iff y//z = x

In this case the quasigroup axioms take the more familiar form:

x\xy = y, xy/y = x,
x(x\y) = y, (x/y)y = x.

It is less well known, although equally obvious, that the dual algebra
(Q; ∗, //, \\) of the quasigroup (Q; ·, \, /) is also a quasigroup.
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Definition 3 Let (Q; ·) be a groupoid, and let a be a fixed element in Q.
Left (right) translation La (Ra) is defined by Lax = a · x (Rax = x · a) for
all x ∈ Q.

For quasigroups it is possible to define a third kind of translation, namely,
middle translations: Pa is a middle translation of a quasigroup (Q; ·) iff
x · Pax = a for all x ∈ Q (see [4]).

It follows that:

Pax = x\a, P−1
a x = a/x.

The relationship between (inverses of) translations of A and of parastro-
phes of A is shown in the Table 1.

ε (12) (13) (23) (123) (132)

R R L R−1 P P−1 L−1

L L R P−1 L−1 R−1 P
P P P−1 L−1 R L R−1

R−1 R−1 L−1 R P−1 P L
L−1 L−1 R−1 P L R P−1

P−1 P−1 P L R−1 L−1 R

Table 1: Translations of quasigroup parastrophes

Consequently:

Theorem 2 Every (inverse of) {left, right, middle} translation of A is the
left translation of some parastrophe of A.

Using a metavariable T for translations (including ε, which may, but
need not be actual translation), we can reformulate Theorem 2; thus:
For any translation Ta there is a parastrophe ◦ of · such that T±1

a = L◦a.
Therefore, when we write ’translation’ this includes inverses of translations
as well. Also note that we abbreviated translations Ta in Table 1 to T as
a ∈ Q is fixed in this case.

Definition 4 Let groupoids (Q; ◦) and (Q; ·) be given. A triple (α, β, γ) of
mappings α, β, γ : Q −→ Q is a homotopy of (Q; ◦) into (Q; ·) if γ(x ◦ y) =
αx · βy. We say that (Q; ◦) is a homotopic pre–image of (Q; ·).

A homotopy (α, β, γ) is an isotopy if α, β, γ are all bijections i.e. per-
mutations of Q.

Definition 5 A homotopy (α, β, γ) is derivative if one of α, β, γ is the iden-
tity map ε. A derivative homotopy is {left, right, middle} if {α = ε, β =
ε, γ = ε}.
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If the remaining two maps are also bijections, we say that (α, β, γ) is
(left, right, middle) derivative isotopy. If γ is a bijection, we write (Q; ◦) =
(Q; ·)(α, β, γ) or somewhat shorter: ◦ = ·(α, β, γ).

2 Units

This Section serves as a reminder of properties of quasigroup units.

Definition 6 • An element i ∈ Q is an idempotent of (Q; ·) iff i · i = i.

• An element e` ∈ Q (er ∈ Q) is a left (right) unit of (Q; ·) iff e` · x =
x (x · er = x) for all x ∈ Q.

• An element e ∈ Q is a (two–sided) unit of (Q; ·) iff it is both left and
right unit.

• An element em ∈ Q is a middle unit of (Q; ·) iff x · x = em for all
x ∈ Q.

Theorem 3 A {left, right, middle} unit is the unique idempotent in a quasi-
group. On the other hand, a quasigroup need not have idempotents or it may
have several of them. But, even if it has a unique idempotent, it need not be
a unit – left, right or middle.

Proof. The first statement is well known (a two-sided or middle unit is
necessarily unique, even in groupoid case). The next example confirms the
second statement. �

Example 1 The quasigroup given by the Cayley table:

◦ 0 1 2 3
0 0 1 3 2
1 1 0 2 3
2 3 2 1 0
3 2 3 0 1

has the unique idempotent 0 which is neither left, right nor middle unit.

Definition 7 A quasigroup (Q; ·) is:

• A left (right) loop if (Q; ·) has a left (right) unit.

• An unipotent quasigroup if (Q; ·) has a middle unit.

• A loop if it has both left and right units.
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• An unipotent left (right) loop if it has left (right) and middle unit.

• An unipotent loop if it has left, right and middle unit.

Lemma 1 A quasigroup (Q; ·, \, /) is a left (right) loop iff x/x = y/y
(x\x = y\y) for all x, y ∈ Q.

A quasigroup (Q, ·, \, /) is a loop iff x/x = y\y for all x, y ∈ Q.
A quasigroup (Q, ·, \, /) is unipotent iff xx = yy for all x, y ∈ Q.
A quasigroup (Q, ·, \, /) is unipotent left (right) loop iff x/x = yy (x\x =

yy) for all x, y ∈ Q.
A quasigroup (Q, ·, \, /) is unipotent loop iff x\x = y/y = zz for all

x, y, z ∈ Q.

Unit Symbol Identities (1) Formulas (3)

none (Q) x = x x = x
idempotent (i) ee = e ∃x(xx = x)

left (eQ) ex = x x/x = y/y
right (Qe) xe = x x\x = y\y

middle (U) xx = e xx = yy
` + r (Q1) ex = x, xe = x x/x = y\y
` + m (eU) ex = x, xx = e x/x = yy
r + m (Ue) xe = x, xx = e x\x = yy

` + r + m (U1) ex = x, xe = x, xx = e x/x = y\y = zz

Table 2: Units in quasigroups

Identities which define various units and their equivalents from Lemma 1
are collected in Table 2 for easy reference. Note that we are implicitly
dealing with four different types of algebras: 1–operation quasigroups, 1–
operation quasigroups with a constant, 3–operation quasigroups, and 3–
operation quasigroups with a constant. All lattices of classes of quasigroups,
defined above in one of the four languages mentioned, are isomorphic to the
generic lattice, given in Figure 1.

From Lemma 1 it follows that an operation · has a unit iff \ and / are both
unipotent i.e. they have the (common) middle unit. Similar connections
between different kinds of units in various parastrophes of a quasigroup
(Q; ·) are given in Table 3.

We see that every type of quasigroup from Lemma 1 may be defined by
a single identity. The only exceptions are unipotent loops which require two
identities. This suggests the following:

Problem 3 Is there a single identity (in the language {·, \, /} of quasi-
groups) which defines unipotent loops among them?
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Figure 1: Generic lattice of classes of quasigroups

* * *

The following Theorem generalizes [17, Proposition 1.3], giving a type
of result we are after – a family of identities which forces the existence of
various units, giving partial solutions to Problem 2.

Theorem 4 A nonempty quasigroup (Q, ·, \, /) is a loop iff any of the con-
ditions hold:

x(y/y) · z = x · (y/y)z (1)

x(y\y) · z = x · (y\y)z. (2)

A nonempty quasigroup (Q, ·, \, /) is an unipotent left loop iff any of the
conditions hold:

(x\yy)\z = x\(yy\z) (3)

(x\(y/y))\z = x\((y/y)\z). (4)
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ε (12) (13) (23) (123) (132)

i i i i i i i
e` e` er em e` er em
er er e` er em em e`
em em em e` er e` er

Table 3: Units of parastrophic quasigroups.

A nonempty quasigroup (Q, ·, \, /) is an unipotent right loop iff any of the
conditions hold:

(x/yy)/z = x/(yy/z) (5)

(x/(y\y))/z = x/((y\y)/z. (6)

Proof. The proofs of (2)–(6) are analogous to the original one for (1), rely-
ing on the internal symmetry of quasigroups. As an example, we prove just
(5).

(a) If (Q; ·, \, /) is unipotent right loop with the middle unit e, then
xe = x and yy = e; therefore, x/e = x and e/y = y. Replacing in (5), we
get (x/yy)/z = (x/e)/z = x/z = x/(e/z) = x/(yy/z), which means that (5)
is identically true.

(b) Assume (5) and replace z by y. We get (x/yy)/y = x/(yy/y) = x/y.
Cancellation from the right gives us x/yy = x i.e. x = x · yy and finally
x\x = yy, which, by Lemma 1, forces quasigroup to be a unipotent right
loop. �

3 Derivatives

We start with Belousov’s derivatives – the right derivative (Aa ) and the
left derivative (aA), which he introduced in [2] and used in the investigation
of G-loops in [1, 3, 5]. We end up with the general notion of derivative
D = A(α, β, γ). Somewhere in between is the notion of the inner derivative
Da = A(T1, T2, T ) which depends on two translations by the given a ∈ Q.
We discuss the relationship between various types of derivatives and, in the
case of (general) derivatives, their existence and uniqueness.

3.1 Quasigroup derivatives – the classical case

It is clear that the identity of associativity is not true in all quasigroups. But
we can replace it by the following equality which is true in all quasigroups
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(Q;A):
A(A(a, x), y) = A(a,Aa(x, y)), (7)

where a, x, y ∈ Q, and Aa is some binary operation which depends on the
element a.

Definition 8 The operation Aa is called Belousov’s right derivative opera-
tion of A relative to the element a.

Obviously, Aa(x, y) = L−1
a A(Lax, y) i.e. Aa = A(L, ε, L). Dually,

Definition 9 The operation aA, defined by the equation

A(x,A(y, a)) = A(aA(x, y), a) (8)

is Belousov’s left derivative operation of A relative to the element a.

Consequently, aA(x, y) = R−1
a A(x,Ray) i.e. aA = A(ε, R,R).

Lemma 2 ([5]) 1. Any right derivative (Q;Aa) of a quasigroup (Q;A) has
the left identity element, i.e., (Q;Aa) is a left loop.

2. Any left derivative (Q; aA) of a quasigroup (Q;A) has the right identity
element, i.e., (Q; aA) is a right loop.

Proof. Case 1. As it was noticed above, a right derivative (Q;Aa) of a quasi-
group (Q;A) is also a quasigroup. In the equality (7) we put x = e, where
e is the right local unit for a (i.e. A(a, e) = a). We obtain A(A(a, e), y) =
A(a,Aa(e, y)), A(a, y) = A(a,Aa(e, y)), and y = Aa(e, y) for all y ∈ Q. So
(Q;Aa) is a left loop with the left unit e.

Case 2. Follows by duality. �

From Lemma 2 it follows that any quasigroup has left (right) derivatives,
and all these derivatives are right (left) loops.

Theorem 5 For every quasigroup A, aA = ((A∗)a)
∗.

Proof. From the definition of the left derivative aA, we get

A∗(A∗(a, y), x) = A∗(a, (aA)∗(y, x)),

i.e. (aA)∗ = (A∗)a. Obviously, aA = ((A∗)a)
∗. �

Inspired by Belousov’s derivatives, we define the middle derivative oper-
ation:

Definition 10 The operation A
a

, defined by

A
a

(x, y) = Pax · Pay (9)

is called Belousov’s middle derivative operation of A relative to the element
a.

Obviously, A
a

= A(P, P, ε). Belousov’s middle derivative need not have any

of the units. See below.
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3.2 Quasigroup derivatives – the general case

Definition 11 An operation D on Q is called a derivative operation of A
if (Q;D) is a homotopic pre–image of (Q;A) i.e. if

γD(x, y) = A(αx, βy), (10)

where (α, β, γ) is a derivative homotopy.
Operation D is called {left, right, middle} derivative iff {α = ε, β =

ε, γ = ε}.

If (and only if) γ is a bijection, we write: D = A(α, β, γ).

Definition 12 An operation Da on Q is called an inner derivative operation
of A ( relative to the element a ∈ Q) if Da is a derivative operation of A,
where one of the maps α, β, γ is ε while the other two are some translations
by a.

As above, if γ is a bijection, we write Da = A(α, β, γ). But when we want
to emphasize that two of α, β, γ are translations of a (and assuming that Ta
is a bijection), we write Da = A(T

′
a, T

′′
a , Ta).

Example 2 Let (Q;A) be a quasigroup. Belousov’s right derivative Aa
(resp. Belousov’s left derivative aA) of A is a right (resp. left) inner deriva-
tive of A relative to a in the sense of Definition 12.

Just as in the case of Belousov’s derivative operations, we have:

Theorem 6 An operation D is a right derivative of an operation A iff D∗

is a left derivative of the operation A∗.
In particular, Da(T1, ε, T2) is an inner right derivative of the operation

A iff D∗a(ε, T
∗
3 , T

∗
4 ) is an inner left derivative of the operation A∗.

Note, T ∗3 and T ∗4 are ∗–translations by a, determined by T1 and T2 as in
the Table 1.

Proof. Hint: if D is the right derivative of the operation A, then there are
functions α, γ such that (α, ε, γ) is a right derivative homotopy. �

Analogously, for the middle derivatives we have:

Theorem 7 D = A(α, β, ε) iff D∗ = A∗(β, α, ε).
In particular, Da = A(T1, T2, ε) iff D∗a = A∗(T ∗3 , T

∗
4 , ε) for the appropriate

T ∗3 , T
∗
4 .

Corollary 1 The duals of left derivatives are right derivatives and vice
versa.

The duals of middle derivatives are also middle derivatives.
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Example 3 Let A be an arbitrary binary operation on Q and let (α, β, γ) be
a derivative isotopy on Q. A derivative operation D(x, y) = γ−1A(αx, βy)
is unique but need not be a quasigroup.

Example 4 Let A(x, y) = γx = a for some a ∈ Q. Then (10) is true for
any D. Therefore, any binary operation D on Q is a derivative of A but is
certainly not unique.

Example 5 Let A(x, y) = a and γx = b for some a, b ∈ Q; a 6= b. The
identity (10) reduces to a = b, which is false. Therefore, no D exists in this
case.

The previous example shows that derivative need not exist in general.
This rises several related problems:

Problem 4 Find conditions for the existence of the derivative operation D
of the operation A on Q.

Problem 5 Find conditions for the uniqueness of D.

Problem 6 Find conditions for D to be {left, right} quasigroup.

Problem 7 Find conditions for D to be a quasigroup with {left, right, mid-
dle} unit.

This is just a special case of Problem 2.

Problem 8 Find conditions for the existence of all Da (a ∈ Q).

Problem 9 Find conditions, forcing all Da (a ∈ Q) to be equal (and con-
sequently independent of a).

We try to answer some of the above-mentioned questions in the following
theorems.

Theorem 8 The operation D exists if the mapping γ is injective. The op-
eration D is unique iff γ is bijective.

In particular, the unique middle derivative exists for every A,α and β.

Proof. Obvious. �

Theorem 9 Let α, β, γ be a triple of bijections. Then the operation D is a
{left, right} quasigroup iff A is {left, right} quasigroup.
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4 Units from derivatives

We are returning back to Problem 2, trying to find out which identities:
Da = · (in a (pointed) quasigroup (Q; ·, \, /, a)) imply the existence of a
{left, right, middle} unit. There are 108 inner derivativesDa = ·(T ′, T ′′, T ),
and consequently there are 108 candidate identities to check

·(T ′, T ′′, T ) = · (T ′T ′′T )

We investigate these cases mostly using programs ’Prover9’ and ’Mace4’

by McCune [12, 11]. Obtained results are presented in Tables 4 and 5. In
Table 4 identities are collected by the type of unit whose existence they im-
ply. It is assumed that the particular identity does not imply the existence
of units which are not emphasized in the title of its group.

We give here human readable forms of proofs found by Prover9. Occa-
sionally, we present more general proof – an instance of some identity

·(α, β, γ) = · (αβγ)

and use it to pack several identities and related proofs together.
We denote identities from Table 4 using three-letter words (as above)

so that the identity ·(α, β, γ) = · is denoted by (αβγ). (Warning – to save
some space, we use T̄ = T−1, but only in Table 4. Also, in the rest of the
paper we drop the subscript a). For example, the identity ax · (a\y) = x · y
is denoted by (LL̄ε). Also note that a notation which contains the letter T
and/or one of L±1, R±1, P±1 actually represents a family of identities. The
results from Table 4 can be summarized, thus:

Theorem 10 1) Quasigroups satisfying any of the 24 identities:
(εL±1L±1), (εR±1P±1), (L±1εP±1), (L±1R±1ε), (R±1εR±1), (P±1P±1ε)
need not have any kind of unit.

2) Quasigroups satisfying any of the 32 identities: (TεL±1), (TL±1ε),
(L±1εR±1), (L±1P±1ε) are left loops.

a) Quasigroups satisfying any of the four of these identities:
(R±1L±1ε), are loops.

b) Quasigroups satisfying one of the other four identities: (P±1εL±1),
are unipotent left loops.

c) Quasigroups satisfying any of the remaining 24 identities need not
have right and/or middle unit.

3) Quasigroups satisfying any of the 32 identities: (εTR±1), (R±1Tε),
(εR±1L±1), (P±1R±1ε) are right loops.

a) The four identities (R±1L±1ε) were discussed in 2a).
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No units

x · ay = a · xy (εLL) ax · y = xy\a (LεP ) xa · y = xy · a (RεR)
x · ay = a\xy (εLL̄) ax · y = a/xy (LεP̄ ) xa · y = xy/a (RεR̄)
x(a\y) = a · xy (εL̄L) (a\x)y = xy\a (L̄εP ) (x/a)y = xy · a (R̄εR)
x(a\y) = a\xy (εL̄L̄) (a\x)y = a/xy (L̄εP̄ ) (x/a)y = xy/a (R̄εR̄)
x · ya = xy\a (εRP ) ax · ya = xy (LRε) (x\a)(y\a) = xy (PPε)
x · ya = a/xy (εRP̄ ) ax · (y/a) = xy (LR̄ε) (x\a)(a/y) = xy (PP̄ε)
x(y/a) = xy\a (εR̄P ) (a\x) · ya = xy (L̄Rε) (a/x)(y\a) = xy (P̄Pε)
x(y/a) = a/xy (εR̄P̄ ) (a\x)(y/a) = xy (L̄L̄ε) (a/x)(a/y) = xy (P̄ P̄ ε)

Left unit Middle unit Right unit

ax · y = a · xy (LεL) x(y\a) = a · xy (εPL) x · ay = xy · a (εLR)
ax · y = a\xy (LεL̄) x(y\a) = a\xy (εP L̄) x · ay = xy/a (εLR̄)
(a\x)y = a · xy (L̄εL) x(a/y) = a · xy (εP̄L) x(a\y) = xy · a (εL̄R)
(a\x)y = a\xy (L̄εL̄) x(a/y) = a\xy (εP̄ L̄) x(a\y) = xy/a (εL̄R̄)
xa · y = a · xy (RεL) x(y\a) = xy\a (εPP ) x · ya = xy · a (εRR)
xa · y = a\xy (RεL̄) x(y\a) = a/xy (εP P̄ ) x · ya = xy/a (εRR̄)
(x/a)y = a · xy (R̄εL) x(a/y) = xy\a (εP̄P ) x(y/a) = xy · a (εR̄R)
(x/a)y = a\xy (R̄εL̄) x(a/y) = a/xy (εP̄ P̄ ) x(y/a) = xy/a (εR̄R̄)
ax · ay = xy (LLε) (x\a)y = xy · a (PεR) xa · ya = xy (RRε)
ax · (a\y) = xy (LL̄ε) (x\a)y = xy/a (PεR̄) xa · (y/a) = xy (RR̄ε)
(a\x) · ay = xy (L̄Lε) (a/x)y = xy · a (P̄ εR) (x/a) · ya = xy (R̄Rε)
(a\x)(a\y) = xy (L̄L̄ε) (a/x)y = xy/a (P̄ εR̄) (x/a)(y/a) = xy (R̄R̄ε)
(x\a) · ay = xy (PLε) (x\a)y = xy\a (PεP ) xa · (y\a) = xy (RPε)
(x\a)(a\y) = xy (PL̄ε) (x\a)y = a/xy (PεP̄ ) xa · (a/y) = xy (RP̄ε)
(a/x) · ay = xy (P̄Lε) (a/x)y = xy\a (P̄ εP ) (x/a)(y\a) = xy (R̄Pε)
(a/x)(a\y) = xy (P̄ L̄ε) (a/x)y = a/xy (P̄ εP̄ ) (x/a)(a/y) = xy (R̄P̄ ε)
ax · y = xy · a (LεR) x · ay = xy\a (εLP ) x · ya = a · xy (εRL)
ax · y = xy/a (LεR̄) x · ay = a/xy (εLP̄ ) x · ya = a\xy (εRL̄)
(a\x)y = xy · a (L̄εR) x(a\y) = xy\a (εL̄P ) x(y/a) = a · xy (εR̄L)
(a\x)y = xy/a (L̄εR̄) x(a\y) = a/xy (εL̄P̄ ) x(y/a) = a\xy (εR̄L̄)
ax · (y\a) = xy (LPε) xa · y = xy\a (RεP ) (x\a) · ya = xy (PRε)
ax · (a/y) = xy (LP̄ε) xa · y = a/xy (RεP̄ ) (x\a)(y/a) = xy (PR̄ε)
(a\x)(y\a) = xy (L̄Pε) (x/a)y = xy\a (R̄εP ) (a/x) · ya = xy (P̄Rε)
(a\x)(a/y) = xy (L̄P̄ ε) (x/a)y = a/xy (R̄εP̄ ) (a/x)(y/a) = xy (P̄ R̄ε)

Left and middle unit Left and right unit Right and middle unit

(x\a)y = a · xy (PεL) xa · ay = xy (RLε) x(y\a) = xy · a (εPR)
(x\a)y = a\xy (PεL̄) xa · (a\y) = xy (RL̄ε) x(y\a) = xy/a (εPR̄)
(a/x)y = a · xy (P̄ εL) (x/a) · ay = xy (R̄Lε) x(a/y) = xy · a (εP̄R)
(a/x)y = a\xy (P̄ εL̄) (x/a)(a\y) = xy (R̄L̄ε) x(a/y) = xy/a (εP̄ R̄)

Table 4: Classification of 108 identities
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b) Quasigroups satisfying any of the other four identities: (εP±1R±1)
are unipotent right loops.

c) Quasigroups satisfying any of the remaining 24 identities need not
have left and/or middle unit.

4) Quasigroups satisfying any of the 32 identities: (εP±1T ), (P±1εT ),
(εL±1P±1), (R±1εP±1) are unipotent.

a) The four identities (P±1εL±1) were discussed in 2b).

b) The four identities (εP±1R±1) were discussed in 3b).

c) Quasigroups satisfying any of the remaining 24 identities need not
have left and/or right unit.

5) Among 108 given identities, there is no identity which forces a quasi-
group satisfying it to have all three types of units.

In the rest of this section we give the proof of Theorem 10.

4.1 Positive results

4.1.1 Identities implying the existence of the left unit

Theorem 11 A sufficient condition for a derivative D = ·(α, β, γ) of a
quasigroup · to have left unit is: γ = Laβ. Moreover:

• If D is right derivative, then γ = La is sufficient.

• If D is middle derivative, then β = L−1
a is sufficient.

Proof. Assume D(x, y) = γ−1(αx · βy). Replace x by α−1a. We get
D(α−1a, y) = γ−1(αα−1a · βy) = γ−1(a · βy) = γ−1Laβy. If γ = Laβy
then D(α−1a, y) = y.

The rest of the statement is obvious. �

Corollary 2 (TεL)⇒ (eQ).

Corollary 3 (TL−1ε)⇒ (eQ).

Theorem 12 The identity (αεL−1) implies (eQ).

Proof. Assume x · y = L(αx · y). For x = a we get a · y = a · (αa · y).
Cancelling from the left yields y = αa · y, i.e. αa is the left unit. �

Corollary 4 (TεL−1)⇒ (eQ).
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Theorem 13 The identity (αLε) implies (eQ).

Proof. Assume x·y = αx ·Ly. For x = a we get a·y = αa ·(a·y). Replacing
a · y by z yields z = αa · z, i.e. αa is the left unit. �

Corollary 5 (TLε)⇒ (eQ).

Lemma 3 (LεR)⇒ (eQ).

Proof. Assume x · y = R−1(Lax · y). Then:

R(x · y) = Lx · y. (11)

Replacing y by a in (11), we get R(xa) = RLx. Cancelling yields

Rx = Lx. (12)

Replacing (12) in (11) provides L(xy) = Lx · y, i.e. identity (LεL). By
Corollary 2, (eQ) follows. �

Lemma 4 (LεR−1)⇒ (eQ).

Proof. Assume x · y = R(Lx · y). Then:

R−1(x · y) = Lx · y. (13)

Replacing y by a in (13), we getR−1(xa) = RLx. Cancelling yields x = RLx,
i.e.

R−1x = Lx. (14)

Replacing (14) in (13) provides L(xy) = Lx · y, i.e. identity (LεL). By
Corollary 2, (eQ) follows. �

Lemma 5 (LPε)⇒ (eQ).

Proof. Assume x · y = Lx · Py. Then

x · y = ax · (y\a). (15)

Replacing y by ax in (15), we get x · ax = ax · (ax\a) = a. Consequently

ax = x\a

Using this in (15), we get xy = Lx ·Ly, i.e. identity (LLε). By Corollary 5,
(eQ) follows. �

Lemma 6 (LP−1ε)⇒ (eQ).
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Proof. Assume x · y = Lx · P−1y. Then

x · y = ax · (a/y). (16)

Replacing y by Px in (16), we get x(x\a) = ax · P−1Px. Consequently

ax = a/x

Using this in (16), we get xy = Lx ·Ly, i.e. identity (LLε). By Corollary 5,
(eQ) follows. �

Lemma 7 (L−1εR)⇒ (eQ).

Proof. Assume xy = R−1(L−1x · y), i.e.

R(xy) = L−1x · y. (17)

Replacing y by a, we get R(xa) = RL−1x. After cancellation we obtain

Rx = L−1x.

Using this in (17), we get L−1(xy) = L−1x · y, which is identity (L−1εL−1).
By Corollary 4, (eQ) follows. �

Lemma 8 (L−1εR−1)⇒ (eQ).

Proof. Assume xy = R(L−1x · y), i.e.

R−1(xy) = L−1x · y. (18)

Replacing y by a, we get R−1Rx = RL−1x. After cancellation we obtain

R−1x = L−1x.

Using this in (18), we get L−1(xy) = L−1x · y, which is identity (L−1εL−1).
By Corollary 4, (eQ) follows. �

Lemma 9 (L−1Pε)⇒ (eQ).

Proof. Assume xy = L−1x · Py, i.e.

xy = L−1x · (y\a). (19)

Replacing y by L−1x, we get x(a\x) = (L−1x) · ((L−1x)\a) = a i.e.

L−1x = a\x = x\a = Px.

Using this in (19), we get xy = L−1x · L−1y, which is identity (L−1L−1ε).
By Corollary 3, (eQ) follows. �

Lemma 10 (L−1P−1ε)⇒ (eQ).

Proof. Assume
xy = L−1x · P−1y. (20)

Let u = L−1x and v = P−1y. Identity (20) becomes au · (v\a) = uv.
Replacing v by au, we get u · au = au · (au\a) = a. From Pu = u\a = au =
Lu we get P−1 = L−1. This, used in (20), yields xy = L−1x ·L−1y, which is
identity (L−1L−1ε). By Corollary 3, (eQ) follows. �
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4.1.2 Identities implying the existence of the right unit

Theorem 14 A sufficient condition for a derivative D = ·(α, β, γ) of a
quasigroup · to have right unit is: γ = Rα. Moreover:

• If D is left derivative, then γ = R is sufficient.

• If D is middle derivative, then α = R−1 is sufficient.

Proof. Let D(x, y) = γ−1(αx ·βy). By Theorem 6 D∗(y, x) = γ−1(βy ∗αx),
i.e. D∗ is a derivative operation of the operation ∗. As a parastrophe of the
quasigroup ·, operation ∗ is also a quasigroup, and we can apply Theorem
11 to it. It means that there is a left unit e for ∗ if γ = L∗α. Therefore
γ = Rα implies e ∗ x = x i.e. x · e = x.

The rest of the statement is obvious. �

Analogously, using duality of quasigroups as above, we can prove:

Theorem 15 • The identity (εβR−1) implies (Qe).

• The identity (Rβε) implies (Qe).

as well as:

Lemma 11 Any of the identities: (εTR), (εTR−1), (RTε), (R−1Tε), (εRL),
(εRL−1), (PRε), (P−1Rε), (εR−1L), (εR−1L−1), (PR−1ε), (P−1R−1ε) implies
(Qe).

4.1.3 Identities implying the existence of the middle unit

Theorem 16 A sufficient condition for a derivative D = ·(α, β, γ) of a
quasigroup · to have middle unit is: β = Pα. Moreover:

• If D is left derivative, then β = P is sufficient.

• If D is right derivative, then α = P−1 suffice.

Proof. Assume D(x, y) = γ−1(αx · βy). Replace β by Pα. Then D(x, y) =
γ−1(αx · Pαy) and D(x, x) = γ−1(αx · Pαx) = γ−1(αx · (αx\a)) = γ−1a i.e.
γ−1a is the middle unit.

The rest of the statement is obvious. �

Corollary 6 Every one of the identities: (εPT ), (P−1εT ) implies (U).

Theorem 17 The identity (εP−1γ) implies (U).
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Proof. Assume x · y = γ−1(x · P−1y). Then

γ(xy) = x(a/y). (21)

For y = x\a we get γ(x(x\a)) = x · (a/(x\a)). Therefore γa = xx, i.e. γa is
the middle unit. �

Corollary 7 (εP−1T )⇒ (U).

Theorem 18 The identity (Pεγ) implies (U).

Proof. From Theorem 17, by duality. �

Corollary 8 (PεT )⇒ (U)

Lemma 12 (εLP )⇒ (U).

Proof. Assume P (xy) = x · Ly i.e.

(xy)\a = x · ay. (22)

In this identity we replace x by z and then y by z\x. We get z(z\x)\a =
z · a(z\x) i.e.

x\a = z · a(z\x) (23)

If we put z = a in the equality (23), we get x\a = a · a(a\x) = ax so
Px = Lx. Using this in (22), we get:

P (xy) = x · Py,

which is (εPP ). By Corollary 6, (U) follows. �

Lemma 13 (εLP−1)⇒ (U).

Proof. Assume P−1(xy) = x · Ly i.e.

a/xy = x · ay. (24)

Replacing x by z and then y by z\x, we get

a/x = z · a(z\x).

If we replace z by a in this identity, we get a/x = a · a(a\x) = ax i.e.
P−1x = Lx. Using this in (24), we get P−1(xy) = x · P−1y, which is
(εP−1P−1). By Corollary 7, (U) follows. �

Lemma 14 (εL−1P )⇒ (U).
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Proof. Assume
xy = P−1(x · L−1y). (25)

It follows that xy\a = x(a\y) and a = xy ·x(a\y). Replacing x by a, we get
a = ay · a(a\y), which is equivalent to a = ay · y. Then P−1y = a/y = ay =
Ly and P = L−1. Replacing this in (25), we get xy = P−1(x · Py), which is
the identity (εPP ). Therefore, (U) follows by Corollary 6. �

Lemma 15 (εL−1P−1)⇒ (U).

Proof. Assume P−1(xy) = x · L−1y i.e.

a/xy = x(a\y). (26)

Replacing x by a, we get a/ay = a(a\y) = y, which implies a = y · ay i.e.

y\a = ay.

This means that Py = Ly and consequently P−1y = L−1y. Replacing this
in (26), we get P−1(xy) = x ·P−1y which is (εP−1P−1). By Corollary 7, (U)
follows. �

Lemma 16 Any of the identities: (RεP ), (RεP−1), (R−1εP ), (R−1εP−1) im-
plies (U).

Proof. The above identities are dual to the identities (εLP−1), (εLP ),
(εL−1P−1), (εL−1P ) respectively. Therefore, the Lemma is the consequence
of Lemmas 13, 12, 15, 14 respectively. �

In some sense, there exists a theorem that is the converse of the previous
theorems.

Theorem 19 If a quasigroup (Q; ·) has a left (right, middle) unit, then
(Q; ·) has an autotopy.

Proof. If the quasigroup (Q; ·) has a left unit f , then the following equality
f · xy = fx · y is true, and (Q; ·) has autotopy (Lf , ε, Lf ).

If the quasigroup (Q; ·) has a right unit e, then the following equality
xy · e = x · ye is true, and (Q; ·) has autotopy (ε, Re, Re).

If the quasigroup (Q; ·) has a middle unit, then it is unipotent, and the
following equalities are true xy · xy = y · y = a for all x, y ∈ Q and some
fixed a ∈ Q.

From these equalities we have the following (xy)\a = xy, y\a = y.
Further we have (xy)\a = x · (y\a). The last means that the quasigroup
(Q; ·) has the following autotopy (ε, Pa, Pa) (see Table 1). �
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4.2 Negative results

In order to prove the negative results of Theorem 10, we use the following
quasigroups:

Q1:

• 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

Q2:

• 0 1 2
0 0 1 2
1 2 0 1
2 1 2 0

Q∗2:

• 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

Q3:

• 0 1 2
0 1 0 2
1 2 1 0
2 0 2 1

Q∗3:

• 0 1 2
0 1 2 0
1 0 1 2
2 2 0 1

Q4:

• 0 1 2
0 1 2 0
1 2 0 1
2 0 1 2

Q5:

• 0 1 2 3 4 5
0 1 0 2 3 5 4
1 0 1 4 5 3 2
2 4 3 1 2 0 5
3 5 2 3 1 4 0
4 2 5 0 4 1 3
5 3 4 5 0 2 1

Q6:

• 0 1 2 3 4 5
0 1 0 2 3 5 4
1 0 1 5 4 2 3
2 4 2 3 1 0 5
3 5 3 1 2 4 0
4 2 4 0 5 3 1
5 3 5 4 0 1 2

Q7:

• 0 1 2 3 4 5
0 1 0 2 4 3 5
1 0 1 3 5 2 4
2 2 4 5 1 0 3
3 3 5 1 2 4 0
4 4 2 0 3 5 1
5 5 3 4 0 1 2

Q8:

• 0 1 2 3 4 5
0 1 0 2 4 3 5
1 0 1 4 2 5 3
2 4 3 0 5 1 2
3 5 2 3 0 4 1
4 2 5 1 3 0 4
5 3 4 5 1 2 0

Q9:

• 0 1 2 3 4 5
0 1 0 4 2 3 5
1 0 1 5 4 2 3
2 4 3 2 1 5 0
3 5 2 1 3 0 4
4 2 5 3 0 4 1
5 3 4 0 5 1 2

Q∗6:

• 0 1 2 3 4 5
0 1 0 4 5 2 3
1 0 1 2 3 4 5
2 2 5 3 1 0 4
3 3 4 1 2 5 0
4 5 2 0 4 3 1
5 4 3 5 0 1 2
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Q10:

• 0 1 2 3 4 5
0 1 0 4 5 2 3
1 0 1 2 3 4 5
2 4 3 5 2 0 1
3 5 2 1 0 3 4
4 2 5 3 4 1 0
5 3 4 0 1 5 2

Q11:

• 0 1 2 3 4 5
0 1 0 4 5 2 3
1 0 1 3 2 5 4
2 2 4 0 3 1 5
3 3 5 1 4 0 2
4 4 2 5 0 3 1
5 5 3 2 1 4 0

Q∗5:

• 0 1 2 3 4 5
0 1 0 4 5 2 3
1 0 1 3 2 5 4
2 2 4 1 3 0 5
3 3 5 2 1 4 0
4 5 3 0 4 1 2
5 4 2 5 0 3 1

Q∗10:

• 0 1 2 3 4 5
0 1 0 4 5 2 3
1 0 1 3 2 5 4
2 4 2 5 1 3 0
3 5 3 2 0 4 1
4 2 4 0 3 1 5
5 3 5 1 4 0 2

Q12:

• 0 1 2 3 4 5
0 1 0 4 5 2 3
1 0 1 3 2 5 4
2 4 5 2 1 3 0
3 2 4 1 3 0 5
4 3 2 5 0 4 1
5 5 3 0 4 1 2

Q13:

• 0 1 2 3 4 5
0 1 0 4 5 2 3
1 0 1 3 2 5 4
2 5 3 2 1 4 0
3 4 2 1 3 0 5
4 3 5 0 4 1 2
5 2 4 5 0 3 1

Note that quasigroups Q∗2 (resp. Q∗3, Q
∗
5, Q

∗
6, Q

∗
10) are dual to Q2 (resp.

Q3, Q5, Q6, Q10).

The negative results are collected in Table 5. It consists of entries of the
form:

Qi

Text1 Text2

List of identities
(T1T2T ),

where:

• Qi is either one of the above quasigroups or a Cartesian product of
two of them;

• “Text1” is either “a = 0”or “a = (0, 0)”so that a ∈ Qi;

• T1, T2 and T are translations of Qi by the element a such that all
formulas (T1T2T ) in the List are true in Qi;

• “Text2” is either “no units” (when Qi has no units) or the equality
“e = p” (“e = (p, q)”), claiming that p ∈ Qi ((p, q) ∈ Qi) is the unit of
Qi of the type indicated by the title of the group to which Qi belongs.
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Quasigroups

Q11 Q12 Q8

a = 0 no units a = 0 no units a = 0 no units
(εL±1L±1) (L±1εP±1) (R±1εR±1)

Q9 Q13 Q7

a = 0 no units a = 0 no units a = 0 no units
(εR±1P±1) (L±1R±1ε) (P±1P±1ε)

Left loops Unipotent quasigroups Right loops

Q2 ×Q4 Q∗5 Q∗10

a = (0, 0) e = (0, 2) a = 0 e = 1 a = 0 e = 1
(LεL), (L−1εL−1), (εP±1L±1), (εL±1P±1) (εL±1R±1), (εR±1L±1)
(LL−1ε), (L−1Lε)

Q1 ×Q∗3 Q∗2 ×Q∗3 Q∗2 ×Q4

a = (0, 0) e = (0, 1) a = (0, 0) e = (0, 1) a = (0, 0) e = (0, 2)
(LεL−1), (L−1εL), (εPP ), (εP−1P−1), (εRR), (εR−1R−1),
(LLε), (L−1L−1ε) (PεP−1), (P−1εP ) (RR−1ε), (R−1Rε)

Q10 Q2 ×Q3 Q1 ×Q3

a = 0 e = 1 a = (0, 0) e = (0, 1) a = (0, 0) e = (0, 1)
(R±1εL±1), (L±1εR±1) (εPP−1), (εP−1P ), (εRR−1), (εR−1R),

(PεP ), (P−1εP−1) (RRε), (R−1R−1ε)

Q∗6 Q5 Q6

a = 0 e = 1 a = 0 e = 1 a = 0 e = 1
(P±1L±1ε), (L±1P±1ε) (P±1εR±1), (R±1εP±1) (R±1P±1ε), (P±1R±1ε)

Unipotent left loops Loops Unipotent right loops

Q∗3 Q1 Q∗2

a = 0 e = 1 a = 0 e = 0 a = 0 e = 0
(PεL), (P−1εL−1) (RLε), (R−1L−1ε) (εPR), (εP−1R−1)

Q2 Q4 Q3

a = 0 e = 0 a = 0 e = 2 a = 0 e = 1
(PεL−1), (P−1εL) (RL−1ε), (R−1Lε) (εPR−1), (εP−1R)

Table 5: Countermodels
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However, e is not a unit of any other type, and this is the essence of our
negative result.

Let us see how it works in some examples.

Example 6 In the group ’Unipotent left loops’ there is an entry:

Q2

a = 0 e = 0

(PεL−1), (P−1εL),

It means that the quasigroup Q2 satisfies identities (P0εL
−1
0 ) and (P−1

0 εL0).
Moreover, the element 0 is both left and middle unit but not right unit.
Although this is not written explicitly, Q2 also satisfies (εP0P

−1
0 ), (εP−1

0 P0),
(P0εP0), (P−1

0 εP−1
0 ), namely:

x(y\0) = 0/xy, (27)

x(0/y) = xy\0, (28)

(x\0)y = xy\0, (29)

(0/x)y = 0/xy. (30)

Example 7 Analogously, the quasigroup Q3 from the group ’Unipotent right
loops’ satisfies (εP0R

−1
0 ) and (εP−1

0 R0). Moreover, the element 1 is both
right and middle unit but not left unit. Q3 also satisfies (εP0P

−1
0 ), (εP−1

0 P0),
(P0εP0), (P−1

0 εP−1
0 ) i.e. (27)–(30).

Example 8 From Examples 6 and 7 it follows that the quasigroup Q2×Q3

also satisfies (εPaP
−1
a ), (εP−1

a Pa), (PaεPa), (P
−1
a εP−1

a ) but for a = (0, 0).
Likewise, the element e = (0, 1) is the middle unit but neither left nor right
unit.

This completes the justification related to the entry:

Q2 ×Q3

a = (0, 0) e = (0, 1)

(εPP−1), (εP−1P ),
(PεP ), (P−1εP−1)

in the group ’Unipotent quasigroups’.
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5 The case of idempotents

There is a close connection between units and idempotents in a quasigroup.
Recall Theorem 3 and Example 1. We can consider several aspects of idem-
potents:

1. The existence of an idempotent.

2. The uniqueness of an existing idempotent.

3. The closedness of the set E(Q) 6= φ of all idempotents of Q.

4. The universality of idempotence in Q.

The formulas which axiomatize these properties are collected in Table 6.

Property Symbol with e without e

none (Q) x = x
existence (i) ee = e ∃x(xx = x)

uniqueness (j) xx = x⇒ x = e (xx = x ∧ yy = y)⇒ x = y
E(Q) closed (k) (xx = x ∧ yy = y)⇒ xy · xy = xy

universal (I) xx = x
trivial (T) x = y

Table 6: Idempotents in quasigroups

If a quasigroup has one of the properties 1–4 above relative to the op-
eration ·, then it has the same properties relative to operations \, /. The
converse is also true.

These properties are closely related and mutually dependent. For exam-
ple, we have:

Theorem 20 ((I) ∧ (j))⇒ (T).

The lattice of classes of quasigroups with various idempotence properties
is given in Figure 2.

We can pose the following problems, analogous to Belousov’s Problem #
18:

Problem 10 Find identites which force quasigroups satisfying them to have
an idempotent.

Problem 11 Find identites which force quasigroups satisfying them to have
a unique idempotent.
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Figure 2: Lattice of classes of quasigroups related to idempotency

Problem 12 Find identites which force quasigroups satisfying them to have
closed E(Q).

Problem 13 Find identites which force quasigroups satisfying them to be
idempotent.

For example:

Example 9 Any identity which implies the existence of {left, right, middle}
unit is a solution of Problems (10)–(12) (see Theorem 3).

But we are more interested in identities which yield idempotents which are
not necessarily units. One such example is:

Example 10 Every quasigroup which satisfies (i) and the following weak
medial identity: xy · xy = xx · yy, also satisfies (k).

Proof. Easy. �
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