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Abstract. We obtain sufficient conditions for the existence
and uniqueness of a local solution of the Cauchy problem for a
quasilinear system with negative functions of the variable t and
show that the solution has the same x-smoothness as the initial
function. We also obtain sufficient conditions for the existence
and uniqueness of a nonlocal solution of the Cauchy problem for
a quasilinear system with negative functions of the variable t.
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Introduction

A problem with shift for mixed type equation with two degeneration lines
was considered in [8].

We consider the system{
∂tu (t, x) + (a(t)u(t, x) + b(t)v(t, x))∂xu (t, x) = f1(t, x),
∂tv(t, x) + (c(t)u(t, x) + g(t)v(t, x))∂xv(t, x) = f2(t, x),

(1)

where u(t, x), v(t, x) are unknown functions, f1(t, x), f2(t, x), a(t), b(t), c(t),
g(t) are given functions, a(t), b(t), c(t), g(t) ∈ C([0, T ]) and

a(t) < 0, b(t) < 0, c(t) < 0, g(t) < 0 on [0, T ].

For system (1), we consider the following initial conditions:

u(0, x) = ϕ1(x), v(0, x) = ϕ2(x), (2)
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where ϕ1(x) and ϕ2(x) are given functions. Problem (1), (2) is considered
on ΩT = {(t, x) |0 ≤ t ≤ T, x ∈ [0,+∞), T > 0}.

In [5], by means of an additional argument method, there were found the
conditions of nonlocal solvability of the Cauchy problem for the system{

∂tu (t, x) + (a(t)u(t, x) + b(t)v(t, x) + h1(t))∂xu (t, x) = f1(t, x),
∂tv(t, x) + (c(t)u(t, x) + g(t)v(t, x) + h2(t))∂xv(t, x) = f2(t, x),

(3)

subject to the initial conditions (2) on ΩT , where u(t, x) and v(t, x) are
unknown functions, f1(t, x), f2(t, x), a(t), b(t), c(t), g(t), h1(t), h2(t) are
given functions, a(t) > 0, b(t) < 0, c(t) > 0, g(t) < 0, h1(t) ≤ 0, h2(t) ≤ 0
on [0, T ].

Systems (1), (3) appear in various problems in natural sciences. For
instance, such systems are applied in models of shallow water [1].

In [5], the existence and uniqueness of a nonlocal solution of the Cauchy
problem (3), (2) on ΩT were proved under the following conditions

a(t) > 0, b(t) < 0, c(t) > 0, g(t) < 0, h1(t) ≤ 0, h2(t) ≤ 0 on [0, T ],

ϕ1(x) ≤ 0, ϕ2(x) ≥ 0, ϕ′1(x) ≥ 0, ϕ′2(x) ≤ 0 on [0,+∞),

f1(t, x) ≤ 0, f2(t, x) ≥ 0, ∂xf1(t, x) ≥ 0, ∂xf2(t, x) ≤ 0 on ΩT .

In the present work, by means of the additional argument method, we de-
termine the nonlocal solvability conditions for the Cauchy problem (1), (2)
on ΩT in the case when a(t), b(t), c(t), g(t) are continuous and negative
functions on [0, T ]. Also, we assume that

ϕ1(x) ≥ 0, ϕ2(x) ≥ 0, ϕ′1(x) ≤ 0, ϕ′2(x) ≤ 0 on [0,+∞),

f1(t, x) ≥ 0, f2(t, x) ≥ 0, ∂xf1(t, x) ≤ 0, ∂xf2(t, x) ≤ 0 on ΩT .

We can avoid setting boundary conditions at x = 0 if

a(t) < 0, b(t) < 0, c(t) < 0, g(t) < 0 on [0, T ],

ϕ1(x) ≥ 0, ϕ2(x) ≥ 0 on [0,+∞), f1(t, x) ≥ 0, f2(t, x) ≥ 0 on ΩT .

By means of the additional argument method, we obtain the following
extended characteristic system (see [1]–[7] for details):

dη1(s, t, x)

ds
= a(s)w1(s, t, x) + b(s)w3(s, t, x), (4)

dη2(s, t, x)

ds
= c(s)w4(s, t, x) + g(s)w2(s, t, x), (5)

dw1(s, t, x)

ds
= f1(s, η1), (6)
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dw2(s, t, x)

ds
= f2(s, η2), (7)

w3(s, t, x) = w2(s, s, η1), w4(s, t, x) = w1(s, s, η2), (8)

η1(t, t, x) = x, η2(t, t, x) = x, (9)

w1(0, t, x) = ϕ1(η1(0, t, x)), w2(0, t, x) = ϕ2(η2(0, t, x)). (10)

Unknown functions ηi, i = 1, 2, and wj, j = 1, 4, depend not only on t
and x, but also on additional argument s. Integrating equations (4)–(7) with
respect to the argument s and taking into considerations conditions (8)–(10),
we obtain an equivalent system of integral equations:

η1(s, t, x) = x−
∫ t

s

(a(ν)w1 + b(ν)w3)dν, (11)

η2(s, t, x) = x−
∫ t

s

(c(ν)w4 + g(ν)w2)dν, (12)

w1(s, t, x) = ϕ1(η1(0, t, x)) +

∫ s

0

f1(ν, η1)dν, (13)

w2(s, t, x) = ϕ2(η2(0, t, x)) +

∫ s

0

f2(ν, η2)dν, (14)

w3(s, t, x) = w2(s, s, η1), w4(s, t, x) = w1(s, s, η2). (15)

Substituting (11) and (12) into (13)–(15)), we get

w1(s, t, x) = ϕ1(x−
∫ t

0

(a(ν)w1 + b(ν)w3)dν) +

+

∫ s

0

f1(ν, x−
∫ t

ν

(a(τ)w1 + b(τ)w3)dτ)dν, (16)

w2(s, t, x) = ϕ2(x−
∫ t

0

(c(ν)w4 + g(ν)w2)dν) +

+

∫ s

0

f2(ν, x−
∫ t

ν

(c(τ)w4 + g(τ)w2)dτ)dν, (17)

w3(s, t, x) = w2(s, s, x−
∫ t

s

(a(ν)w1 + b(ν)w3)dν), (18)

w4(s, t, x) = w1(s, s, x−
∫ t

s

(c(ν)w4 + g(ν)w2)dν). (19)

Denote ΓT = {(s, t, x)| 0 ≤ s ≤ t ≤ T, x ∈ [0,+∞), T > 0}.

Lemma 1 Assume that the system of integral equations (16)–(19) has a
unique solution wj ∈ C(ΓT ), j = 1, 4, and

a(t) < 0, b(t) < 0, c(t) < 0, g(t) < 0 on [0, T ],
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ϕ1(x) ≥ 0, ϕ2(x) ≥ 0 on [0,+∞), f1(t, x) ≥ 0, f2(t, x) ≥ 0 on ΩT .

Then wj(s, t, x), ηi(s, t, x) ∈ [0,+∞) on ΓT , j = 1, 4, i = 1, 2.

Proof. From (16) and conditions ϕ1(x) ≥ 0 on [0,+∞), f1(t, x) ≥ 0 on ΩT ,
it follows that w1(s, t, x) ≥ 0 on ΓT . From (17) and conditions ϕ2(x) ≥ 0 on
[0,+∞), f2(t, x) ≥ 0 on ΩT , we find that w2(s, t, x) ≥ 0 on ΓT .

Since w1(s, t, x) ≥ 0 and w2(s, t, x) ≥ 0 on ΓT , from (18) and (19), we
conclude that w3(s, t, x) ≥ 0, w4(s, t, x) ≥ 0 on ΓT . Since w1(s, t, x) ≥ 0,
w3(s, t, x) ≥ 0 on ΓT and a(t) < 0, b(t) < 0 on [0, T ], from (11), it follows
that η1(s, t, x) ∈ [0,+∞) on ΓT . Finally, from w2(s, t, x) ≥ 0, w4(s, t, x) ≥ 0
on ΓT , c(t) < 0, g(t) < 0 on [0, T ] and (12), we conclude that η2(s, t, x) ∈
[0,+∞) on ΓT . �

Lemma 2 Let w1(s, t, x) and w2(s, t, x) satisfy the system of integral equa-
tions (16)–(19)). Assume that w1(s, t, x), w2(s, t, x) together with their first-
order derivatives are continuously differentiable and bounded. Then the pair
of functions

u(t, x) = w1(t, t, x), v(t, x) = w2(t, t, x)

is a solution to the problem (1)), (2) on ΩT0, where T0 is a constant.

Lemma 2 plays the key role in the additional argument method. It is
proved in a standard way (cf., for example, [1]).

1 Existence of local solution

Let us introduce the following notations:

Cϕ = max{ sup
[0,+∞)

∣∣∣ϕ(l)
i

∣∣∣ ∣∣i = 1, 2, l = 0, 2};

l = max{sup
[0,T ]

|a(t)|, sup
[0,T ]

|b(t)|, sup
[0,T ]

|c(t)|, sup
[0,T ]

|g(t)|};

Cf = max{sup
ΩT

|f1| , sup
ΩT

|f2| , sup
ΩT

|∂xf1| , sup
ΩT

|∂xf2|},

‖U‖ = sup
ΓT

|U(s, t, x)| , ‖f‖ = sup
ΩT

|f(t, x)|;

C̄α1,α2,...αn(Ω∗) is the space of functions continuous and bounded, together
with their derivatives up to order αm w.r.t. m-th argument, m = 1, n, on
unbounded subset Ω∗ ⊂ Rn, n = 1, 2...;
C([0, T ]) is the space of continuous functions on [0, T ].

In the next theorem, we provide conditions for the existence of local
solution to the problem (1), (2).
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Theorem 1 Assume that

ϕ1, ϕ2 ∈ C̄2([0,+∞)), a, b, c, g ∈ C([0, T ]), f1, f2 ∈ C̄2,2(ΩT ),

T ≤ min
( Cϕ

4Cf
,

3

40Cϕl

)
,

a(t) < 0, b(t) < 0, c(t) < 0, g(t) < 0 on [0, T ],

ϕ1(x) ≥ 0, ϕ2(x) ≥ 0, ϕ′1(x) ≤ 0, ϕ′2(x) ≤ 0 on [0,+∞),

f1(t, x) ≥ 0, f2(t, x) ≥ 0, ∂xf1(t, x) ≤ 0, ∂xf2(t, x) ≤ 0 on ΩT .

Then for each

T ≤ min
( Cϕ

4Cf
,

3

40Cϕl

)
,

the Cauchy problem (1), (2) has a unique solution

u(t, x), v(t, x) ∈ C̄1,2(ΩT )

which can be found from the system of integral equations (16)–(19).

The proof of Theorem 1 follows from the following lemma, the proof of
which can be obtained in the same way it was done in [1]–[7].

Lemma 3 Under conditions of Theorem 1, system (16)–(19) has a unique
solution

wj ∈ C1,1,2(ΓT ), j = 1, 4, T ≤ min
( Cϕ

4Cf
,

3

40Cϕl

)
.

2 Existence of nonlocal solution

In the next theorem, we provide conditions for the existence of nonlocal
solution to the problem (1), (2).

Theorem 2 Assume that

ϕ1, ϕ2 ∈ C̄2([0,+∞)), a, b, c, g ∈ C([0, T ]), f1, f2 ∈ C̄2,2(ΩT ),

a(t) < 0, b(t) < 0, c(t) < 0, g(t) < 0 on [0, T ],

ϕ1(x) ≥ 0, ϕ2(x) ≥ 0, ϕ′1(x) ≤ 0, ϕ′2(x) ≤ 0 on [0,+∞),

f1(t, x) ≥ 0, f2(t, x) ≥ 0, ∂xf1(t, x) ≤ 0, ∂xf2(t, x) ≤ 0 on ΩT .

Then for any T > 0, the Cauchy problem (1), (2) has a unique solution

u(t, x), v(t, x) ∈ C̄1,2(ΩT )

which can be found from (16)– (19).
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Proof. Differentiating (1) with respect to x and denoting

p(t, x) = ∂xu(t, x), q(t, x) = ∂xv(t, x),

we obtain the system of equations:
∂tp+ (a(t)u+ b(t)v)∂xp = −a(t)p2 − b(t)pq + ∂xf1,
∂tq + (c(t)u+ g(t)v)∂xq = −g(t)q2 − c(t)pq + ∂xf2,
p(0, x) = ϕ′1(x), q(0, x) = ϕ′2(x).

(20)

We add following two equations to the system (11)– (15):
dγ1(s, t, x)

ds
= −a(s)γ2

1(s, t, x)− b(s)γ1(s, t, x)γ2(s, s, η1) + ∂xf1(s, η1),

dγ2(s, t, x)

ds
= −g(s)γ2

2(s, t, x)− c(s)γ1(s, s, η2)γ2(s, t, x) + ∂xf2(s, η2),

(21)
with conditions

γ1(0, t, x) = ϕ′1(η1), γ2(0, t, x) = ϕ′2(η2). (22)

System (21) can be written in the form
γ1 (s, t, x) = ϕ′1(η1) +

s∫
0

[−a(ν)γ2
1 − b(ν)γ1γ2(ν, ν, η1) + ∂xf1]dν,

γ2(s, t, x) = ϕ′2(η2) +

s∫
0

[−g(ν)γ2
2 − c(ν)γ2γ1(ν, ν, η2) + ∂xf2]dν.

(23)

As in [2]–[6], one can prove the existence of a continuously differentiable
solution to the problem (23). Therefore,

γ1(t, t, x) = p(t, x) =
∂u

∂x
, γ2(t, t, x) = q(t, x) =

∂v

∂x
.

As in [5], one can prove that for all t and x on ΩT

‖u‖ 6 Cϕ + TCf , ‖v‖ 6 Cϕ + TCf . (24)

Since ϕ1(x) ≥ 0, ϕ2(x) ≥ 0 on [0,+∞), f1(t, x) ≥ 0, f2(t, x) ≥ 0 on
ΩT , it follows from (13) and (14) that w1(s, t, x) ≥ 0, w2(s, t, x) ≥ 0 on ΓT .
Therefore, u(t, x) = w1(t, t, x) ≥ 0, v(t, x) = w2(t, t, x) ≥ 0 on ΩT .
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From (21), we have

γ1(s, t, x) = ϕ′1(η1) exp
(
−

s

∫
0
(a(ν)γ1 + b(ν)γ2)dν

)
+

+

s∫
0

∂xf1 exp
(
−

s

∫
τ
(a(ν)γ1 + b(ν)γ2)dν

)
dτ,

γ2(s, t, x) = ϕ′2(η2) exp
(
−

s

∫
0
(c(ν)γ1 + g(ν)γ2)dν

)
+

+

s∫
0

∂xf2 exp
(
−

s

∫
τ
(c(ν)γ1 + g(ν)γ2)dν

)
dτ.

(25)

Since
a(t) < 0, b(t) < 0, c(t) < 0, g(t) < 0 on [0, T ],

ϕ′1(x) ≤ 0, ϕ′2(x) ≤ 0 on [0,+∞),

∂xf1(t, x) ≤ 0, ∂xf2(t, x) ≤ 0 on ΩT ,

it follows from (25)) that γ1 ≤ 0, γ2 ≤ 0 on ΓT . Therefore,

‖γi‖ 6 Cϕ + TCf , i = 1, 2.

Since γ1(t, t, x) = ∂xu and γ2(t, t, x) = ∂xv for all t and x on ΩT , the following
estimates hold:

‖∂xu‖ 6 Cϕ + TCf , ‖∂xv‖ 6 Cϕ + TCf . (26)

Thus, ∂xu(t, x) ≤ 0, ∂xv(t, x) ≤ 0 on ΩT .
As in [2]–[6], for all t and x, we obtain the following estimates

|∂2
x2u| ≤ E11ch

(
T
√
C12C21

)
+
E21C12 + C13√

C12C21

sh
(
T
√
C12C21

)
+ C12C23T

2,

(27)

|∂2
x2v| ≤ E21ch

(
T
√
C12C21

)
+
E11C21 + C23√

C12C21

sh
(
T
√
C12C21

)
+ C21C13T

2,

(28)
where E11, E21, C12, C13, C21, C23 are constants.

Owing to the global estimates (24), (26)–(28), we can extend the solution
to any given segment [0, T ]. For the initial values take u(T0, x), v(T0, x) ∈
C̄2([0,+∞)) such that

u(T0, x) ≥ 0, v(T0, x) ≥ 0, ∂xu(T0, x) ≤ 0, ∂xv(T0, x) ≤ 0 on [0,+∞).

Using Theorem 1, extend the solution to the segment [T0, T1]. Then take
for the initial values u(T1, x), v(T1, x) ∈ C̄2([0,+∞)) for which

u(T1, x) ≥ 0, v(T1, x) ≥ 0, ∂xu(T1, x) ≤ 0, ∂xv(T1, x) ≤ 0 on [0,+∞).
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Using Theorem 1, extend the solution to the segment [T1, T2].
Continuing in the similar way, we obtain that functions u(Tk, x), v(Tk, x) ∈

C̄2([0,+∞)) such that

u(Tk, x) ≥ 0, v(Tk, x) ≥ 0, ∂xu(Tk, x) ≤ 0, ∂xv(Tk, x) ≤ 0 on [0,+∞),

satisfy the following estimates

|u(Tk, x)| 6 Cϕ + TCf , |v(Tk, x)| 6 Cϕ + TCf ,

|∂xu(Tk, x)| 6 Cϕ + TCf , |∂xv(Tk, x)| 6 Cϕ + TCf .

The second-order derivatives satisfy estimates (27) and (28). As a result,
one can extend the solution to any given segment [0, T ] in finitely many steps.

The uniqueness of the solution to the Cauchy problem (1), (2) is proved
with the help of estimates similar to those used in the proof of the conver-
gence of successive approximations. �

Let us bring an example.
Example. Consider the system

∂tu (t, x)− ((t+ 2)u(t, x) + (t3 + t+ 4)v(t, x))∂xu (t, x) =
2

t+ x+ 1
,

∂tv(t, x)− ((t+ 3)u(t, x) + (t3 + t+ 5)v(t, x))∂xv(t, x) =
t+ 7

e8x + 2
,

(29)
where u(t, x) and v(t, x) are unknown functions, with initial conditions

u(0, x) = ϕ1(x) =
1

x+ 1
, v(0, x) = ϕ2(x) =

1

e11x + 2
. (30)

on ΩT = {(t, x) |0 ≤ t ≤ T, x ∈ [0,+∞), T > 0}.
We have

ϕ′1(x) = − 1

(x+ 1)2
, ϕ′2(x) = − 11e11x

(e11x + 2)2
,

∂xf1(t, x) = − 2

(t+ x+ 1)2
, ∂xf2(t, x) = −8e8x(t+ 7)

(e8x + 2)2
.

Since

ϕ1, ϕ2 ∈ C̄2([0,+∞)), a, b, c, g ∈ C([0, T ]), f1, f2 ∈ C̄2,2(ΩT ),

a(t) = −t− 2 < 0, b(t) = −t3 − t− 4 < 0,

c(t) = −t− 3 < 0, g(t) = −t3 − t− 5 < 0 on [0, T ],



NONLOCAL SOLVABILITY OF THE CAUCHY PROBLEM FOR A SYSTEM 9

ϕ1(x) =
1

x+ 1
> 0, ϕ2(x) =

1

e11x + 2
> 0,

ϕ′1(x) = − 1

(x+ 1)2
< 0, ϕ′2(x) = − 11e11x

(e11x + 2)2
< 0 on [0,+∞),

f1(t, x) =
2

t+ x+ 1
> 0, f2(t, x) =

t+ 7

e8x + 2
> 0,

∂xf1(t, x) = − 2

(t+ x+ 1)2
< 0, ∂xf2(t, x) = −8e8x(t+ 7)

(e8x + 2)2
< 0 on ΩT ,

by Theorem 2, Cauchy problem (29), (30)) has a unique solution u(t, x), v(t, x) ∈
C̄1,2(ΩT ).
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