[Armenian Journal of Mathematics](http://armjmath.sci.am/) Volume 15, Number 4, 2023, [1–](#page-0-0)[10](#page-9-0) <https://doi.org/10.52737/18291163-2023.15.4-1-10>

Nonlocal Solvability of the Cauchy Problem for a System with Negative Functions of the Variable t

M. V. Dontsova

Abstract. We obtain sufficient conditions for the existence and uniqueness of a local solution of the Cauchy problem for a quasilinear system with negative functions of the variable t and show that the solution has the same x -smoothness as the initial function. We also obtain sufficient conditions for the existence and uniqueness of a nonlocal solution of the Cauchy problem for a quasilinear system with negative functions of the variable t.

Key Words: First-Order Partial Differential Equations, Cauchy Problem, Additional Argument Method, Global Estimates Mathematics Subject Classification 2010: 35F50, 35F55, 35A01

Introduction

A problem with shift for mixed type equation with two degeneration lines was considered in [\[8\]](#page-9-1).

We consider the system

$$
\begin{cases}\n\partial_t u(t,x) + (a(t)u(t,x) + b(t)v(t,x))\partial_x u(t,x) = f_1(t,x), \\
\partial_t v(t,x) + (c(t)u(t,x) + g(t)v(t,x))\partial_x v(t,x) = f_2(t,x),\n\end{cases} (1)
$$

where $u(t, x)$, $v(t, x)$ are unknown functions, $f_1(t, x)$, $f_2(t, x)$, $a(t)$, $b(t)$, $c(t)$, $g(t)$ are given functions, $a(t)$, $b(t)$, $c(t)$, $g(t) \in C([0, T])$ and

$$
a(t) < 0, \ b(t) < 0, \ c(t) < 0, \ g(t) < 0 \ \text{on} \ [0, T].
$$

For system (1) , we consider the following initial conditions:

$$
u(0, x) = \varphi_1(x), \qquad v(0, x) = \varphi_2(x), \tag{2}
$$

where $\varphi_1(x)$ and $\varphi_2(x)$ are given functions. Problem [\(1\)](#page-0-1), [\(2\)](#page-0-2) is considered on $\Omega_T = \{(t, x) | 0 \le t \le T, x \in [0, +\infty), T > 0\}.$

In [\[5\]](#page-8-0), by means of an additional argument method, there were found the conditions of nonlocal solvability of the Cauchy problem for the system

$$
\begin{cases}\n\partial_t u(t,x) + (a(t)u(t,x) + b(t)v(t,x) + h_1(t))\partial_x u(t,x) = f_1(t,x), \\
\partial_t v(t,x) + (c(t)u(t,x) + g(t)v(t,x) + h_2(t))\partial_x v(t,x) = f_2(t,x),\n\end{cases}
$$
\n(3)

subject to the initial conditions [\(2\)](#page-0-2) on Ω_T , where $u(t, x)$ and $v(t, x)$ are unknown functions, $f_1(t, x)$, $f_2(t, x)$, $a(t)$, $b(t)$, $c(t)$, $g(t)$, $h_1(t)$, $h_2(t)$ are given functions, $a(t) > 0$, $b(t) < 0$, $c(t) > 0$, $g(t) < 0$, $h_1(t) \leq 0$, $h_2(t) \leq 0$ on $[0, T]$.

Systems [\(1\)](#page-0-1), [\(3\)](#page-1-0) appear in various problems in natural sciences. For instance, such systems are applied in models of shallow water [\[1\]](#page-8-1).

In [\[5\]](#page-8-0), the existence and uniqueness of a nonlocal solution of the Cauchy problem [\(3\)](#page-1-0), [\(2\)](#page-0-2) on Ω_T were proved under the following conditions

$$
a(t) > 0, b(t) < 0, c(t) > 0, g(t) < 0, h_1(t) \le 0, h_2(t) \le 0 \text{ on } [0, T],
$$

$$
\varphi_1(x) \le 0, \varphi_2(x) \ge 0, \varphi_1'(x) \ge 0, \varphi_2'(x) \le 0 \text{ on } [0, +\infty),
$$

$$
f_1(t, x) \le 0, f_2(t, x) \ge 0, \partial_x f_1(t, x) \ge 0, \partial_x f_2(t, x) \le 0 \text{ on } \Omega_T.
$$

In the present work, by means of the additional argument method, we determine the nonlocal solvability conditions for the Cauchy problem [\(1\)](#page-0-1), [\(2\)](#page-0-2) on Ω_T in the case when $a(t)$, $b(t)$, $c(t)$, $g(t)$ are continuous and negative functions on $[0, T]$. Also, we assume that

$$
\varphi_1(x) \ge 0, \ \varphi_2(x) \ge 0, \ \varphi_1'(x) \le 0, \ \varphi_2'(x) \le 0 \text{ on } [0, +\infty),
$$

$$
f_1(t,x) \ge 0
$$
, $f_2(t,x) \ge 0$, $\partial_x f_1(t,x) \le 0$, $\partial_x f_2(t,x) \le 0$ on Ω_T .

We can avoid setting boundary conditions at $x = 0$ if

$$
a(t) < 0, \ b(t) < 0, \ c(t) < 0, \ g(t) < 0 \text{ on } [0, T],
$$

$$
\varphi_1(x) \ge 0, \ \varphi_2(x) \ge 0 \text{ on } [0, +\infty), \qquad f_1(t, x) \ge 0, \ f_2(t, x) \ge 0 \text{ on } \Omega_T.
$$

By means of the additional argument method, we obtain the following extended characteristic system (see [\[1\]](#page-8-1)–[\[7\]](#page-9-2) for details):

$$
\frac{d\eta_1(s,t,x)}{ds} = a(s)w_1(s,t,x) + b(s)w_3(s,t,x),\tag{4}
$$

$$
\frac{d\eta_2(s,t,x)}{ds} = c(s)w_4(s,t,x) + g(s)w_2(s,t,x),\tag{5}
$$

$$
\frac{dw_1(s,t,x)}{ds} = f_1(s,\eta_1),
$$
\n(6)

$$
\frac{dw_2(s,t,x)}{ds} = f_2(s,\eta_2),
$$
\n(7)

$$
w_3(s,t,x) = w_2(s,s,\eta_1), \ w_4(s,t,x) = w_1(s,s,\eta_2), \tag{8}
$$

$$
\eta_1(t, t, x) = x, \ \eta_2(t, t, x) = x,\tag{9}
$$

$$
w_1(0, t, x) = \varphi_1(\eta_1(0, t, x)), \ w_2(0, t, x) = \varphi_2(\eta_2(0, t, x)). \tag{10}
$$

Unknown functions η_i , $i = 1, 2$, and w_j , $j = \overline{1, 4}$, depend not only on t and x, but also on additional argument s. Integrating equations (4) – (7) with respect to the argument s and taking into considerations conditions (8) – (10) , we obtain an equivalent system of integral equations:

$$
\eta_1(s, t, x) = x - \int_s^t (a(\nu)w_1 + b(\nu)w_3)d\nu,
$$
\n(11)

$$
\eta_2(s, t, x) = x - \int_s^t (c(\nu)w_4 + g(\nu)w_2)d\nu,
$$
\n(12)

$$
w_1(s,t,x) = \varphi_1(\eta_1(0,t,x)) + \int_0^s f_1(\nu, \eta_1) d\nu,
$$
\n(13)

$$
w_2(s,t,x) = \varphi_2(\eta_2(0,t,x)) + \int_0^s f_2(\nu, \eta_2) d\nu,
$$
\n(14)

$$
w_3(s,t,x) = w_2(s,s,\eta_1), \ w_4(s,t,x) = w_1(s,s,\eta_2). \tag{15}
$$

Substituting (11) and (12) into (13) – (15)), we get

$$
w_1(s,t,x) = \varphi_1(x - \int_0^t (a(\nu)w_1 + b(\nu)w_3)d\nu) + \int_0^s f_1(\nu, x - \int_\nu^t (a(\tau)w_1 + b(\tau)w_3)d\tau)d\nu,
$$
 (16)

$$
w_2(s,t,x) = \varphi_2(x - \int_0^t (c(\nu)w_4 + g(\nu)w_2)d\nu) + \int_0^s f_2(\nu, x - \int_{\nu}^t (c(\tau)w_4 + g(\tau)w_2)d\tau)d\nu, \qquad (17)
$$

$$
w_3(s,t,x) = w_2(s,s,x - \int_s^t (a(\nu)w_1 + b(\nu)w_3)d\nu), \qquad (18)
$$

$$
w_4(s,t,x) = w_1(s,s,x - \int_s^t (c(\nu)w_4 + g(\nu)w_2)d\nu).
$$
 (19)

Denote
$$
\Gamma_T = \{ (s, t, x) | 0 \le s \le t \le T, x \in [0, +\infty), T > 0 \}.
$$

Lemma 1 Assume that the system of integral equations (16) – (19) has a unique solution $w_j \in C(\Gamma_T)$, $j = \overline{1, 4}$, and

$$
a(t) < 0, \ b(t) < 0, \ c(t) < 0, \ g(t) < 0 \ on \ [0, T],
$$

 $\varphi_1(x) > 0$, $\varphi_2(x) > 0$ on $[0, +\infty)$, $f_1(t, x) > 0$, $f_2(t, x) > 0$ on Ω_T . Then $w_i(s, t, x), \eta_i(s, t, x) \in [0, +\infty)$ on Γ_T , $j = \overline{1, 4}$, $i = 1, 2$.

Proof. From [\(16\)](#page-2-7) and conditions $\varphi_1(x) \geq 0$ on $[0, +\infty)$, $f_1(t, x) \geq 0$ on Ω_T , it follows that $w_1(s, t, x) \geq 0$ on Γ_T . From [\(17\)](#page-2-7) and conditions $\varphi_2(x) \geq 0$ on $[0, +\infty)$, $f_2(t, x) \geq 0$ on Ω_T , we find that $w_2(s, t, x) \geq 0$ on Γ_T .

Since $w_1(s,t,x) \geq 0$ and $w_2(s,t,x) \geq 0$ on Γ_T , from [\(18\)](#page-2-7) and [\(19\)](#page-2-7), we conclude that $w_3(s,t,x) \geq 0$, $w_4(s,t,x) \geq 0$ on Γ_T . Since $w_1(s,t,x) \geq 0$, $w_3(s,t,x) \geq 0$ on Γ_T and $a(t) < 0$, $b(t) < 0$ on $[0,T]$, from [\(11\)](#page-2-3), it follows that $\eta_1(s,t,x) \in [0,+\infty)$ on Γ_T . Finally, from $w_2(s,t,x) \geq 0$, $w_4(s,t,x) \geq 0$ on Γ_T , $c(t) < 0$, $g(t) < 0$ on $[0, T]$ and (12) , we conclude that $\eta_2(s, t, x) \in$ $[0, +\infty)$ on Γ_T . \Box

Lemma 2 Let $w_1(s,t,x)$ and $w_2(s,t,x)$ satisfy the system of integral equa-tions [\(16\)](#page-2-7)–[\(19\)](#page-2-7)). Assume that $w_1(s,t,x)$, $w_2(s,t,x)$ together with their firstorder derivatives are continuously differentiable and bounded. Then the pair of functions

$$
u(t, x) = w_1(t, t, x),
$$
 $v(t, x) = w_2(t, t, x)$

is a solution to the problem [\(1\)](#page-0-1)), [\(2\)](#page-0-2) on Ω_{T_0} , where T_0 is a constant.

Lemma [2](#page-3-0) plays the key role in the additional argument method. It is proved in a standard way (cf., for example, [\[1\]](#page-8-1)).

1 Existence of local solution

Let us introduce the following notations:

$$
C_{\varphi} = \max \{ \sup_{[0, +\infty)} \left| \varphi_i^{(l)} \right| | i = 1, 2, l = \overline{0, 2} \};
$$

$$
l = \max \{ \sup_{[0, T]} |a(t)|, \sup_{[0, T]} |b(t)|, \sup_{[0, T]} |c(t)|, \sup_{[0, T]} |g(t)| \};
$$

$$
C_f = \max \{ \sup_{\Omega_T} |f_1|, \sup_{\Omega_T} |f_2|, \sup_{\Omega_T} |\partial_x f_1|, \sup_{\Omega_T} |\partial_x f_2| \},
$$

$$
||U|| = \sup_{\Gamma_T} |U(s, t, x)|, ||f|| = \sup_{\Omega_T} |f(t, x)|;
$$

 $\bar{C}^{\alpha_1,\alpha_2,...\alpha_n}(\Omega_*)$ is the space of functions continuous and bounded, together with their derivatives up to order α_m w.r.t. m-th argument, $m = \overline{1, n}$, on unbounded subset $\Omega_* \subset R^n$, $n = 1, 2...$;

 $C([0,T])$ is the space of continuous functions on $[0,T]$.

In the next theorem, we provide conditions for the existence of local solution to the problem (1) , (2) .

Theorem 1 Assume that

$$
\varphi_1, \varphi_2 \in \bar{C}^2([0, +\infty)), \quad a, b, c, g \in C([0, T]), \quad f_1, f_2 \in \bar{C}^{2,2}(\Omega_T),
$$

$$
T \le \min\left(\frac{C_{\varphi}}{4C_f}, \frac{3}{40C_{\varphi}l}\right),
$$

$$
a(t) < 0, \ b(t) < 0, \ c(t) < 0, \ g(t) < 0 \text{ on } [0, T],
$$

$$
\varphi_1(x) \ge 0, \ \varphi_2(x) \ge 0, \ \varphi_1'(x) \le 0, \ \varphi_2'(x) \le 0 \text{ on } [0, +\infty),
$$

$$
f_1(t, x) \ge 0, \ f_2(t, x) \ge 0, \ \partial_x f_1(t, x) \le 0, \ \partial_x f_2(t, x) \le 0 \text{ on } \Omega_T.
$$

Then for each

$$
T \le \min\Big(\frac{C_{\varphi}}{4C_f}, \frac{3}{40C_{\varphi}l}\Big),
$$

the Cauchy problem (1) , (2) has a unique solution

$$
u(t, x), v(t, x) \in \overline{C}^{1,2}(\Omega_T)
$$

which can be found from the system of integral equations (16) – (19) .

The proof of Theorem [1](#page-3-1) follows from the following lemma, the proof of which can be obtained in the same way it was done in $[1]-[7]$ $[1]-[7]$.

Lemma 3 Under conditions of Theorem [1,](#page-3-1) system (16) – (19) has a unique solution

$$
w_j \in C^{1,1,2}(\Gamma_T), \ j = \overline{1,4}, \ T \le \min\left(\frac{C_{\varphi}}{4C_f}, \frac{3}{40C_{\varphi}l}\right).
$$

2 Existence of nonlocal solution

In the next theorem, we provide conditions for the existence of nonlocal solution to the problem (1) , (2) .

Theorem 2 Assume that

$$
\varphi_1, \varphi_2 \in \bar{C}^2([0, +\infty)), \quad a, b, c, g \in C([0, T]), \quad f_1, f_2 \in \bar{C}^{2,2}(\Omega_T),
$$

$$
a(t) < 0, b(t) < 0, c(t) < 0, g(t) < 0 \text{ on } [0, T],
$$

$$
\varphi_1(x) \ge 0, \ \varphi_2(x) \ge 0, \ \varphi_1'(x) \le 0, \ \varphi_2'(x) \le 0 \text{ on } [0, +\infty),
$$

$$
f_1(t, x) \ge 0, \ f_2(t, x) \ge 0, \ \partial_x f_1(t, x) \le 0, \ \partial_x f_2(t, x) \le 0 \text{ on } \Omega_T.
$$

Then for any $T > 0$, the Cauchy problem [\(1\)](#page-0-1), [\(2\)](#page-0-2) has a unique solution

$$
u(t, x), v(t, x) \in \overline{C}^{1,2}(\Omega_T)
$$

which can be found from $(16) - (19)$ $(16) - (19)$ $(16) - (19)$.

Proof. Differentiating [\(1\)](#page-0-1) with respect to x and denoting

$$
p(t,x) = \partial_x u(t,x), \qquad q(t,x) = \partial_x v(t,x),
$$

we obtain the system of equations:

$$
\begin{cases}\n\partial_t p + (a(t)u + b(t)v)\partial_x p = -a(t)p^2 - b(t)pq + \partial_x f_1, \\
\partial_t q + (c(t)u + g(t)v)\partial_x q = -g(t)q^2 - c(t)pq + \partial_x f_2, \\
p(0, x) = \varphi_1'(x), \quad q(0, x) = \varphi_2'(x).\n\end{cases} (20)
$$

We add following two equations to the system (11) – (15) :

$$
\begin{cases}\n\frac{d\gamma_1(s,t,x)}{ds} = -a(s)\gamma_1^2(s,t,x) - b(s)\gamma_1(s,t,x)\gamma_2(s,s,\eta_1) + \partial_x f_1(s,\eta_1), \\
\frac{d\gamma_2(s,t,x)}{ds} = -g(s)\gamma_2^2(s,t,x) - c(s)\gamma_1(s,s,\eta_2)\gamma_2(s,t,x) + \partial_x f_2(s,\eta_2),\n\end{cases} (21)
$$

with conditions

$$
\gamma_1(0, t, x) = \varphi'_1(\eta_1), \qquad \gamma_2(0, t, x) = \varphi'_2(\eta_2). \tag{22}
$$

System [\(21\)](#page-5-0) can be written in the form

$$
\begin{cases}\n\gamma_1(s,t,x) = \varphi_1'(\eta_1) + \int_0^s [-a(\nu)\gamma_1^2 - b(\nu)\gamma_1\gamma_2(\nu,\nu,\eta_1) + \partial_x f_1]d\nu, \\
\gamma_2(s,t,x) = \varphi_2'(\eta_2) + \int_0^s [-g(\nu)\gamma_2^2 - c(\nu)\gamma_2\gamma_1(\nu,\nu,\eta_2) + \partial_x f_2]d\nu.\n\end{cases}
$$
\n(23)

As in [\[2\]](#page-8-2)–[\[6\]](#page-8-3), one can prove the existence of a continuously differentiable solution to the problem [\(23\)](#page-5-1). Therefore,

$$
\gamma_1(t, t, x) = p(t, x) = \frac{\partial u}{\partial x}, \qquad \gamma_2(t, t, x) = q(t, x) = \frac{\partial v}{\partial x}.
$$

As in [\[5\]](#page-8-0), one can prove that for all t and x on Ω_T

$$
||u|| \leq C_{\varphi} + TC_f, \qquad ||v|| \leq C_{\varphi} + TC_f. \tag{24}
$$

Since $\varphi_1(x) \geq 0$, $\varphi_2(x) \geq 0$ on $[0, +\infty)$, $f_1(t, x) \geq 0$, $f_2(t, x) \geq 0$ on Ω_T , it follows from [\(13\)](#page-2-5) and [\(14\)](#page-2-8) that $w_1(s,t,x) \geq 0$, $w_2(s,t,x) \geq 0$ on Γ_T . Therefore, $u(t, x) = w_1(t, t, x) \geq 0$, $v(t, x) = w_2(t, t, x) \geq 0$ on Ω_T .

From [\(21\)](#page-5-0), we have

$$
\begin{cases}\n\gamma_1(s,t,x) = \varphi_1'(\eta_1) \exp\left(-\int_0^s (a(\nu)\gamma_1 + b(\nu)\gamma_2) d\nu\right) + \\
\qquad + \int_0^s \partial_x f_1 \exp\left(-\int_\tau^s (a(\nu)\gamma_1 + b(\nu)\gamma_2) d\nu\right) d\tau, \\
\gamma_2(s,t,x) = \varphi_2'(\eta_2) \exp\left(-\int_0^s (c(\nu)\gamma_1 + g(\nu)\gamma_2) d\nu\right) + \\
\qquad + \int_0^s \partial_x f_2 \exp\left(-\int_\tau^s (c(\nu)\gamma_1 + g(\nu)\gamma_2) d\nu\right) d\tau.\n\end{cases} \tag{25}
$$

Since

$$
a(t) < 0, \ b(t) < 0, \ c(t) < 0, \ g(t) < 0 \text{ on } [0, T],
$$
\n
$$
\varphi'_1(x) \le 0, \ \varphi'_2(x) \le 0 \text{ on } [0, +\infty),
$$
\n
$$
\partial_x f_1(t, x) \le 0, \ \partial_x f_2(t, x) \le 0 \text{ on } \Omega_T,
$$

it follows from [\(25\)](#page-6-0)) that $\gamma_1 \leq 0$, $\gamma_2 \leq 0$ on Γ_T . Therefore,

$$
\|\gamma_i\| \leqslant C_\varphi + TC_f, \ i = 1, 2.
$$

Since $\gamma_1(t, t, x) = \partial_x u$ and $\gamma_2(t, t, x) = \partial_x v$ for all t and x on Ω_T , the following estimates hold:

$$
\|\partial_x u\| \leqslant C_{\varphi} + TC_f, \qquad \|\partial_x v\| \leqslant C_{\varphi} + TC_f. \tag{26}
$$

Thus, $\partial_x u(t, x) \leq 0$, $\partial_x v(t, x) \leq 0$ on Ω_T .

As in $[2]-[6]$ $[2]-[6]$, for all t and x, we obtain the following estimates

$$
|\partial_{x^2}^2 u| \le E_{11} ch \left(T \sqrt{C_{12} C_{21}} \right) + \frac{E_{21} C_{12} + C_{13}}{\sqrt{C_{12} C_{21}}} sh \left(T \sqrt{C_{12} C_{21}} \right) + C_{12} C_{23} T^2,
$$
\n
$$
|\partial_{x^2}^2 v| \le E_{21} ch \left(T \sqrt{C_{12} C_{21}} \right) + \frac{E_{11} C_{21} + C_{23}}{\sqrt{C_{12} C_{21}}} sh \left(T \sqrt{C_{12} C_{21}} \right) + C_{21} C_{13} T^2,
$$
\n
$$
(27)
$$

$$
|\partial_{x^2}^2 v| \le E_{21} ch \left(T \sqrt{C_{12} C_{21}} \right) + \frac{E_{11} C_{21} + C_{23}}{\sqrt{C_{12} C_{21}}} sh \left(T \sqrt{C_{12} C_{21}} \right) + C_{21} C_{13} T^2,
$$
\n(28)

where E_{11} , E_{21} , C_{12} , C_{13} , C_{21} , C_{23} are constants.

Owing to the global estimates (24) , (26) – (28) , we can extend the solution to any given segment [0, T]. For the initial values take $u(T_0, x), v(T_0, x) \in$ $\overline{C}^2([0, +\infty))$ such that

$$
u(T_0, x) \ge 0
$$
, $v(T_0, x) \ge 0$, $\partial_x u(T_0, x) \le 0$, $\partial_x v(T_0, x) \le 0$ on $[0, +\infty)$.

Using Theorem [1,](#page-3-1) extend the solution to the segment $[T_0, T_1]$. Then take for the initial values $u(T_1, x), v(T_1, x) \in \overline{C}^2([0, +\infty))$ for which

$$
u(T_1, x) \ge 0, \ v(T_1, x) \ge 0, \ \partial_x u(T_1, x) \le 0, \ \partial_x v(T_1, x) \le 0 \text{ on } [0, +\infty).
$$

Using Theorem [1,](#page-3-1) extend the solution to the segment $[T_1, T_2]$.

Continuing in the similar way, we obtain that functions $u(T_k, x), v(T_k, x) \in$ $\overline{C}^2([0,+\infty))$ such that

$$
u(T_k, x) \ge 0
$$
, $v(T_k, x) \ge 0$, $\partial_x u(T_k, x) \le 0$, $\partial_x v(T_k, x) \le 0$ on $[0, +\infty)$,

satisfy the following estimates

$$
|u(T_k, x)| \leqslant C_{\varphi} + TC_f, \qquad |v(T_k, x)| \leqslant C_{\varphi} + TC_f,
$$

$$
|\partial_x u(T_k, x)| \leqslant C_{\varphi} + TC_f, \qquad |\partial_x v(T_k, x)| \leqslant C_{\varphi} + TC_f.
$$

The second-order derivatives satisfy estimates [\(27\)](#page-6-3) and [\(28\)](#page-6-2). As a result, one can extend the solution to any given segment $[0, T]$ in finitely many steps.

The uniqueness of the solution to the Cauchy problem [\(1\)](#page-0-1), [\(2\)](#page-0-2) is proved with the help of estimates similar to those used in the proof of the convergence of successive approximations. \square

Let us bring an example. Example. Consider the system

$$
\begin{cases}\n\partial_t u(t,x) - ((t+2)u(t,x) + (t^3 + t + 4)v(t,x))\partial_x u(t,x) = \frac{2}{t+x+1}, \\
\partial_t v(t,x) - ((t+3)u(t,x) + (t^3 + t + 5)v(t,x))\partial_x v(t,x) = \frac{t+7}{e^{8x}+2},\n\end{cases}
$$
\n(29)

where $u(t, x)$ and $v(t, x)$ are unknown functions, with initial conditions

$$
u(0,x) = \varphi_1(x) = \frac{1}{x+1}, \ v(0,x) = \varphi_2(x) = \frac{1}{e^{11x} + 2}.
$$
 (30)

on $\Omega_T = \{(t, x) | 0 \le t \le T, x \in [0, +\infty), T > 0\}.$ We have

$$
\varphi_1'(x) = -\frac{1}{(x+1)^2}, \qquad \varphi_2'(x) = -\frac{11e^{11x}}{(e^{11x}+2)^2},
$$

$$
\partial_x f_1(t, x) = -\frac{2}{(t+x+1)^2}, \qquad \partial_x f_2(t, x) = -\frac{8e^{8x}(t+7)}{(e^{8x}+2)^2}.
$$

Since

$$
\varphi_1, \varphi_2 \in \bar{C}^2([0, +\infty)), \quad a, b, c, g \in C([0, T]), \quad f_1, f_2 \in \bar{C}^{2,2}(\Omega_T),
$$

$$
a(t) = -t - 2 < 0, \qquad b(t) = -t^3 - t - 4 < 0,
$$

$$
c(t) = -t - 3 < 0, \qquad g(t) = -t^3 - t - 5 < 0 \text{ on } [0, T],
$$

$$
\varphi_1(x) = \frac{1}{x+1} > 0, \qquad \varphi_2(x) = \frac{1}{e^{11x} + 2} > 0,
$$

$$
\varphi_1'(x) = -\frac{1}{(x+1)^2} < 0, \qquad \varphi_2'(x) = -\frac{11e^{11x}}{(e^{11x} + 2)^2} < 0 \text{ on } [0, +\infty),
$$

$$
f_1(t, x) = \frac{2}{t+x+1} > 0, \qquad f_2(t, x) = \frac{t+7}{e^{8x} + 2} > 0,
$$

$$
\partial_x f_1(t, x) = -\frac{2}{(t+x+1)^2} < 0, \qquad \partial_x f_2(t, x) = -\frac{8e^{8x}(t+7)}{(e^{8x} + 2)^2} < 0 \text{ on } \Omega_T,
$$

by Theorem [2,](#page-4-0) Cauchy problem [\(29\)](#page-7-0), [\(30\)](#page-7-1)) has a unique solution $u(t, x), v(t, x) \in$ $\tilde{C}^{1,2}(\Omega_T).$

References

- [1] S.N. Alekseenko, M.V. Dontsova and D.E. Pelinovsky, Global solutions to the shallow water system with a method of an additional argument. Appl. Anal., 96 (2017), no. 9, pp. 1444–1465. <https://doi.org/10.1080/00036811.2016.1208817>
- [2] M.V. Dontsova, Solvability of Cauchy problem for a system of first order quasilinear equations with right-hand sides $f_1 = a_2u(t, x) +$ $b_2(t)v(t, x)$, $f_2 = g_2v(t, x)$. Ufa Math. J., 11 (2019), no. 1, pp. 27–41. <https://doi.org/10.13108/2019-11-1-27>
- [3] M.V. Dontsova, Solvability of the Cauchy problem for a quasilinear system in original coordinates. J. Math. Sci., 249 (2020), no. 6, pp. 918–928.<https://doi.org/10.1007/s10958-020-04984-x>
- [4] M.V. Dontsova, Sufficient conditions of a nonlocal solvability for a system of two quasilinear equations of the first order with constant terms. Izv. IMI UdGU, 55 (2020), pp. 60–78. [https://doi.org/10.35634/2226-](https://doi.org/10.35634/2226-3594-2020-55-05) [3594-2020-55-05](https://doi.org/10.35634/2226-3594-2020-55-05)
- [5] M.V. Dontsova, Solvability of Cauchy problem for one system of first order quasilinear differential equations (in Russian). Vladikavkaz Mathematical Journal, 23 (2021), no. 3, pp. 64–79. <https://doi.org/10.46698/t8227-2101-5573-p>
- [6] M.V. Dontsova, Nonlocal solvability conditions for Cauchy problem for a system of first order partial differential equations with special right-hand sides. Ufa Math. J., 6 (2014), no. 4, pp. 68–80. <https://doi.org/10.13108/2014-6-4-68>
- [7] M.I. Imanaliev and S.N. Alekseenko, To the problem of the existence of a smooth bounded solution to a system of two nonlinear partial differential equations of the first order. Doklady Mathematics, 64 (2001), no. 1, pp. 10–15.
- [8] O.A. Repin, On a problem with shift for mixed type equation with two degeneration lines. Russian Mathematics, 61 (2017), no. 1, pp. 47–52. <https://doi.org/10.3103/S1066369X17010066>

Marina V. Dontsova Lobachevsky State University of Nizhny Novgorod 23 Gagarin ave., 603950, Nizhny Novgorod, Russia. [dontsowa.marina2011@yandex.ru](mailto: dontsowa.marina2011@yandex.ru)

Please, cite to this paper as published in

Armen. J. Math., V. 15, N. 4(2023), pp. [1–](#page-0-0)[10](#page-9-0) <https://doi.org/10.52737/18291163-2023.15.4-1-10>