Differential Subordination and Coefficient Functionals of Univalent Functions Related to $\cos z$
DOI:
https://doi.org/10.52737/18291163-2026.16.09-1-18Keywords:
Differential Subordination, Univalent Functions, Starlike Functions, Convex Function, cos z, Hermitian-Toeplitz Determinant, Hankel DeterminantAbstract
Differential subordination in the complex plane is the generalization of a differential inequality on the real line. In this paper, we consider two subclasses of univalent functions associated with the trigonometric function $\cos z$. Using some properties of the hypergeometric functions, we determine the sharp estimate on the parameter $\beta$ such that the analytic function $p(z)$ satisfying $p(0)=1$, is subordinate to $\cos z$ when the differential expression $p(z)+\beta z (dp(z)/dz)$ is subordinate to the Janowski function. We compute sharp bounds on coefficient functional Hermitian--Toeplitz determinants of the third and the fourth order with an invariance property for such functions. In addition, we estimate bound on Hankel determinants of the second and the third order.
References
R.M. Ali, Coefficients of the inverse of strongly starlike functions. Bull. Malays. Math. Sci. Soc. (2), 26 (2003), no. 1, pp. 63-71.
R.M. Ali, V. Ravichandran and N. Seenivasagan, Sufficient conditions for Janowski starlikeness. Int. J. Math. Math. Sci., 2007 (2007), Art. ID 62925, 7 pp. https://doi.org/10.1155/2007/62925
K.O. Babalola, On $H_3(1)$ Hankel determinant for some classes of univalent functions. In “Inequality Theory and Applications” vol. 6 (ed. Y. J. Cho, J. K. Kim and S. S. Dragomir), Nova Sci. Publishers, New York, 2010, pp. 1-7.
K. Bano and M. Raza, Starlike functions associated with cosine functions. Bull. Iranian Math. Soc., 47 (2021), no. 5, pp. 1513-1532. https://doi.org/10.1007/s41980-020-00456-9
N. Bohra, S. Kumar and V. Ravichandran, Some special differential subordinations. Hacet. J. Math. Stat., 48 (2019) no. 4, pp. 1017-1034.
K. Cudna, O.S. Kwon, A. Lecko, Y.J. Sim and B. Smiarowska, The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order α. Bol. Soc. Mat. Mex. (3), 26 (2020), no. 2, pp. 361-375. https://doi.org/10.1007/s40590-019-00271-1
P.L. Duren, Univalent Functions, 259, Springer, New York, 1983.
W.K. Hayman, On the second Hankel determinant of mean univalent functions. Proc. London Math. Soc. (3), 18 (1968), pp. 77-94. https://doi.org/10.1112/plms/s3-18.1.77
W. Janowski, Extremal problems for a family of functions with positive real part and for some related families. Ann. Polon. Math., 23 (1970/1971), pp. 159-177. https://doi.org/10.4064/ap-23-2-159-177
P. Jastrzębski, B. Kowalczyk, O.S. Kwon, A. Lecko and Y.J. Sim, Hermitian Toeplitz determinants of the second and third-order for classes of close-to-star functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 114 (2020), no. 166, 14 pp. https://doi.org/10.1007/s13398-020-00895-3
B. Kowalczyk, A. Lecko, and Y.J. Sim, The sharp bound for the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc., 97 (2018), no. 3, pp. 435-445. https://doi.org/10.1017/s0004972717001125
B. Kowalczyk, A. Lecko, and D.K. Thomas, The sharp bound of the third Hankel determinant for starlike functions. Forum Math., 34 (2022), no. 5, pp. 1249-1254. https://doi.org/10.1515/forum-2021-0308
J.G. Krzyż, R.J. Libera and E. Złotkiewicz, Coefficients of inverses of regular starlike functions. Ann. Univ. Mariae Curie-Skłodowska Sect. A, 33 (1979), pp. 103-110.
R. Küstner, On the order of starlikeness of the shifted Gauss hypergeometric function. J. Math. Anal. Appl., 334 (2007), no. 2, pp. 1363-1385. https://doi.org/10.1016/j.jmaa.2007.01.011
V. Kumar, N.E. Cho, V. Ravichandran and H.M. Srivastava, Sharp coefficient bounds for starlike functions associated with the Bell numbers. Math. Slovaca, 69 (2019), no. 5, pp. 1053-1064. https://doi.org/10.1515/ms-2017-0289
S. Kumar and A. Ҫetinkaya, Coefficient inequalities for certain starlike and convex functions. Hacet. J. Math. Stat., 51 (2022), no. 1, pp. 156-171. https://doi.org/10.15672/hujms.778148
S. Kumar and V. Ravichandran, Subordinations for functions with positive real part. Complex Anal. Oper. Theory, 12 (2018), no.5, pp. 1179-1191. https://doi.org/10.1007/s11785-017-0690-4
V. Kumar and S. Kumar, Bounds on Hermitian-Toeplitz and Hankel determinants for strongly starlike functions. Bol. Soc. Mat. Mex., 27 (2021), no.2, paper No. 55. https://doi.org/10.1007/s40590-021-00362-y
A. Lecko, Y.J. Sim and B. Śmiarowska, The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2. Complex Anal. Oper. Theory, 13 (2019), no. 5, pp. 2231-2238. https://doi.org/10.1007/s11785-018-0819-0
A. Lecko, Y.J. Sim and B. Śmiarowska, The fourth-order Hermitian Toeplitz determinant for convex functions. Anal. Math. Phys., 10 (2020), no. 3, paper No. 39, 11 pp. https://doi.org/10.1007/s13324-020-00382-3
R.J. Libera and E.J. Złotkiewicz, Coefficient bounds for the inverse of a function with derivative in $mathcal{P}$. Proc. Amer. Math. Soc., 87 (1983), no. 2, pp. 251-257. https://doi.org/10.2307/2043698
S.S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications. Pure and Applied Mathematics, 225, Marcel Dekker, New York, 2000.
M. Nunokawa, M. Obradović and S. Owa, One criterion for univalency. Proc. Amer. Math. Soc., 106 (1989), no. 4, pp. 1035-1037. https://doi.org/10.1090/s0002-9939-1989-0975653-5
M. Obradović and N. Tuneski, Hermitian Toeplitz determinants for the class $S$ of univalent functions. Armen. J. Math., 13 (2021), no. 4, 10 pp. https://doi.org/10.52737/18291163-2021.13.4-1-10
Ch. Pommerenke, On the coefficients and Hankel determinants of univalent functions. J. London Math. Soc., 41 (1966), pp. 111-122. https://doi.org/10.1112/jlms/s1-41.1.111
P. Rai, A. Ҫetinkaya and S. Kumar, Starlike functions associated with $tanh z$ and Bernardi integral operator. Mathematical Foundations of Computing, 6 (2023), no. 3, pp. 573-585. https://doi.org/10.3934/mfc.2022032
P. Rai and S. Kumar, Coefficient inequalities for a subfamily of Sakaguchi starlike functions. Asian-Eur. J. Math., 16 (2023), no. 5, paper No. 2350084, 15 pp. https://doi.org/10.1142/S1793557123500845
B. Rath, K. Sanjay Kumar, D. Vamshee Krishna and A. Lecko, The sharp bound of the third Hankel determinant for starlike functions of order 1/2. Complex Anal. Oper. Theory, 16 (2022), no. 5, paper No. 65, 8 pp. https://doi.org/10.1007/s11785-022-01241-8
V. Ravichandran and S. Verma, Bound for the fifth coefficient of certain starlike functions. C. R. Math. Acad. Sci. Paris, 353 (2015), no. 6, pp. 505-510. https://doi.org/10.1016/j.crma.2015.03.003
S. Ruscheweyh, Convolutions in geometric function theory. Séminaire de Mathématiques Supérieures, 83, Presses de l'Université de Montréal, Montreal, QC, 1982.
Y.J. Sim, D.K. Thomas and P. Zaprawa, The second Hankel determinant for starlike and convex functions of order alpha. Complex Var. Elliptic Equ., 67 (2022), no. 10, pp. 2423-2443. https://doi.org/10.1080/17476933.2021.1931149
H.M. Srivastava, S. Kumar, V. Kumar and N.E. Cho, Hermitian-Toeplitz and Hankel determinants for starlike functions associated with a rational function. J. Nonlinear Convex Anal., 23 (2022), no. 12, pp. 2815-2833.
H.M. Srivastava and A.K. Wanas, Some applications of first-order differential subordinations for holomorphic functions in complex normed spaces. Miskolc Math. Notes, 23 (2022), no. 2, pp. 889-896. https://doi.org/10.18514/mmn.2022.3625
H. Tang, H.M. Srivastava, S.H. Li and G.T. Deng, Majorization results for subclasses of starlike functions based on the sine and cosine functions. Bull. Iranian Math. Soc., 46 (2020), no. 2, pp. 381-388. https://doi.org/10.1007/s41980-019-00262-y
P. Zaprawa, On Hankel determinant $H_2(3)$ for univalent functions. Results Math., 73 (2018), no. 3, paper No. 89, 12 pp. https://doi.org/10.1007/s00025-018-0854-1
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Armenian Journal of Mathematics
This work is licensed under a Creative Commons Attribution 4.0 International License.