A Note on Bi-Periodic Leonardo Sequence
DOI:
https://doi.org/10.52737/18291163-2024.16.5-1-17Keywords:
Leonardo sequence, bi-periodic Fibonacci sequence, Binet's formula, generating function, Catalan's identity, Cassini's identity, d'Ocgane's identityAbstract
In this work, we define a new generalization of the Leonardo sequence by the recurrence relation $GLe_n=aGLe_{n-1}+GLe_{n-2}+a$ (for even $n$) and $GLe_n=bGLe_{n-1}+GLe_{n-2}+b$ (for odd $n$) with the initial conditions $GLe_0=2a-1$ and $GLe_1=2ab-1$, where $a$ and $b$ are real nonzero numbers. Some algebraic properties of the sequence $\{GLe_n\}_{n \geq 0}$ are studied and several identities, including the generating function and Binet's formula, are established.
References
Y. Alp and E.G. Koçer, Some properties of Leonardo numbers. Konuralp J. Math., 9 (2021), no. 1, pp. 183-189.
F.R.V. Alves and R.P.M. Vieira, The Newton fractal’s Leonardo sequence study with the Google Colab. Int. Electron. J. Math. Educ., 15 (2020), no. 2, Article No: em0575, pp 1-9. https://doi.org/10.29333/iejme/6440
G. Bilgici, Two generalizations of Lucas sequence. Appl. Math. Comput., 245 (2014), pp 526-538. https://doi.org/10.1016/j.amc.2014.07.111
P. Catarino and A. Borges, A note on incomplete Leonardo numbers. Integers, 20 (2020), no. A43, pp 1-7.
P. Catarino and A. Borges, On Leonardo numbers. Acta Math. Univ. Comen., 89 (2019), no. 1, pp 75-86.
M. Edson and O. Yayenie, A new generalization of Fibonacci sequence and extended Binet's formula. Integers, 9 (2009), no. 6, pp 639-654. https://doi.org/10.1515/integ.2009.051
H. Gokbas, A new family of number sequences: Leonardo-Alwyn numbers. Armen. J. Math., 15 (2023), no. 6, pp 1-13.
N. Kara and F. Yilmaz, On hybrid numbers with Gaussian Leonardo coefficients. Mathematics, 11 (2023), no. 6, pp 1--12. https://doi.org/10.3390/math11061551
T. Koshy, Pell and Pell-Lucas numbers with applications, Springer, New York, 2014. https://doi.org/10.1007/978-1-4614-8489-9_7
T. Koshy, Fibonacci and Lucas numbers with applications, Vol. 1, Springer, John Wiley and Sons, New Jersey, 2018.
T. Koshy, Fibonacci and Lucas numbers with applications, Vol. 2, Springer, John Wiley and Sons, New Jersey, 2019.
K. Kuhapatanakul and J. Chobsorn, On the generalized Leonardo numbers. Integers 22 (2022), no. A48, pp 1-7.
M.C.S. Mangueira, F.R.V. Alves and P.M.M.C. Catarino, Os números híbridos de K-Leonardo. Brazilian Electronic Journal of Mathematics, 3 (2022), no.5, pp 71-84. https://doi.org/10.14393/bejom-v3-n5-2022-61534
E. Tan and H. Leung, On Leonardo p-numbers. Integers, 23 (2023), no. A7, pp 1-11.
S. Uygun and E. Owusu, A new generalization of Jacobsthal Lucas numbers (bi-periodic Jacobsthal Lucas sequence). J. Adv. Math. Comput. Sci., 34 (2019), no. 5, pp 1-13. https://doi.org/10.9734/jamcs/2019/v34i530226
S. Uygun and E. Owusu, A new generalization of Jacobsthal numbers (Bi-Periodic Jacobsthal Sequences). J. Math. Anal., 7 (2016), no.5, pp 28-39.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Armenian Journal of Mathematics
This work is licensed under a Creative Commons Attribution 4.0 International License.