Hermitian Toeplitz determinants for the class ${\mathcal{S}}$ of univalent functions

Authors

  • Milutin Obradović University of Belgrade
  • Nikola Tuneski Ss. Cyril and Methodius University in Skopje

DOI:

https://doi.org/10.52737/18291163-2021.13.4-1-10

Keywords:

univalent, Hermitian Toepliz determinant of second order, Hermitian Toepliz determinant of third order, class U, convex functions

Abstract

Introducing a new method, we give sharp estimates of the Hermitian Toeplitz determinants of third order for the class $\mathcal{S}$ of functions univalent in the unit disc. The new approach is also illustrated on some subclasses of the class $\mathcal{S}$.

References

Bieberbach L., Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitzungsber. Preuss. Akad. Wiss. Phys-Math., 138 (1916), pp. 940-955.

Babalola K.O., On $H_3(1)$ Hankel determinant for some classes of univalent functions, Inequal. Theory Appl., 6 (2010), pp. 1-7.

Bello R.A. and Opoola T.O., Upper bounds for Fekete-Szego functions and the second Hankel determinant for a class of starlike functions, IOSR Journal of Mathematics, 13 (2017), no. 2 Ver. V, pp. 34-39. https://doi.org/10.9790/5728-1302053439

Cudna K., Kwon O.S., Lecko A., Sim Y.J., and Śmiarowska B., The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order alpha, Bol. Soc. Mat. Mex., 26 (2020), pp. 361-375. https://doi.org/10.1007/s40590-019-00271-1

Kowalczyk B., Kwon O.S., Lecko A., Sim Y.J., and Śmiarowska B., The third-order Hermitian Toeplitz determinant for classes of functions convex in one direction, Bull. Malays. Math. Sci. Soc., 43 (2020), pp. 3143-3158. https://doi.org/10.1007/s40840-019-00859-w

Kowalczyk B., Lecko A., and Sim Y.J., The sharp bound of the Hankel determinant of the third kind for convex functions, Bull. Aust. Math. Soc., 97 (2018), no. 3, 435-445. https://doi.org/10.1017/s0004972717001125

Kwon O.S., Lecko A., and Sim Y.J., The bound of the Hankel determinant of the third kind for starlike functions, Bull. Malays. Math. Sci. Soc., 42 (2019), no. 2, 767-780. https://doi.org/10.1007/s40840-018-0683-0

Kwon O.S. and Sim Y.J., The sharp bound of the Hankel determinant of the third kind for starlike functions with real coefficients, Mathematics, 7 (2019), no. 8, art.no. 721. https://doi.org/10.20944/preprints201907.0200.v1

Lee S.E., Ravichandran V., and Supramaniam S., Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl., 2013 (2013), art.no. 281. https://doi.org/10.1186/1029-242x-2013-281

Li L., Ponnusamy S., and Wirths K.J., Relations of the class $U(λ)$ to other families of functions, arXiv:2104.05346.

Mishra A.K., Prajapat J.K., and Maharana S., Bounds on Hankel determinant for starlike and convex functions with respect to symmetric points, Cogent Math., 3 (2016), art.no. 1160557. https://doi.org/10.1080/23311835.2016.1160557

Obradović M., Starlikeness and certain class of rational functions, Math. Nachr., 175 (1995), pp. 263-268. https://doi.org/10.1002/mana.19951750114

Obradović M. and Ponnusamy S., New criteria and distortion theorems for univalent functions, Complex Variables Theory Appl., 44 (2001), pp. 173-191. (Also Reports of the Department of Mathematics, Preprint 190, June 1998, University of Helsinki, Finland).

Obradović M. and Ponnusamy S., On the class $U$, Proc. 21st Annual Conference of the Jammu Math. Soc. and a National Seminar on Analysis and its Application, 11-26, 2011.

Obradović M., Ponnusamy S., and Wirths K.J., Geometric studies on the class $U(λ)$, Bull. Malays. Math. Sci. Soc., 39 (2016), no. 3, 1259-1284. https://doi.org/10.1007/s40840-015-0263-5

Obradović M., Ponnusamy S., and Wirths K.J., Characteristics of the coefficients and partial sums of some univalent functions, Sib. Math. J., 54 (2013), no. 4, pp. 679-696. https://doi.org/10.1134/s0037446613040095

Obradović M., Ponnusamy S., and Wirths K.J., Logarithmic coefficients and a coefficient conjecture for univalent functions, Monatsh. Math., 185 (2018), no. 3, pp. 489-501. https://doi.org/10.1007/s00605-017-1024-3

Obradović M. and Tuneski N., Hankel determinant for a class of analytic functions, Advances in Mathematics: Scientific Journal, 8 (2019), no. 1, pp. 1-6.

Obradović M. and Tuneski N., Some properties of the class $U$, Annales. Universitatis Mariae Curie-Sklodowska. Sectio A - Mathematica, 73 (2019), no. 1, pp. 49-56. https://doi.org/10.17951/a.2019.73.1.49-56

Obradović M. and Tuneski N., Hankel determinant of second order for some classes of analytic functions, Mathematica Pannonica, accepted. arXiv:1903.08069.

Obradović M. and Tuneski N., Hankel determinants of second and third order for the class $S$ of univalent functions, Mathematica Slovaca, 71 (2021), no. 3, pp. 649-654. https://doi.org/10.1515/ms-2021-0010

Selvaraj C. and Kumar T.R.K., Second Hankel determinant for certain classes of analytic functions, Int. J. Appl. Math., 28 (2015), no. 1, pp. 37-50.

Shi L., Srivastava H.M., Arif M., Hussain S., and Khan H., An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function, Symmetry, 11 (2019), no. 5, art.no. 598. https://doi.org/10.3390/sym11050598

Sokol J. and Thomas D.K., The second Hankel determinant for alpha-convex functions, Lith. Math. J., 58 (2018), no. 2., pp. 212-218. https://doi.org/10.1007/s10986-018-9397-0

Thomas D.K., Tuneski N., and Vasudevarao A., Univalent Functions: A Primer, De Gruyter Studies in Mathematics, 69, De Gruyter, Berlin, Boston, 2018. https://doi.org/10.1515/9783110560961

Trimble S.Y., A coefficient inequality for convex univalent functions, Proc. Amer. Math. Soc., 48 (1975), pp. 266-267. https://doi.org/10.1090/s0002-9939-1975-0355027-0

Vamshee Krishna D., Venkateswarlu B., and Ramreddy T., Third Hankel determinant for starlike and convex functions with respect to symmetric points, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 70 (2016), no. 1, pp. 37-45. https://doi.org/10.17951/a.2016.70.1.37

Ye K. and Lim L.-H., Every matrix is a product of Toeplitz matrices, Found. Comput. Math., 16 (2016), pp. 577-598. https://doi.org/10.1007/s10208-015-9254-z

Zaprawa P., Third Hankel determinants for subclasses of univalent functions, Mediterr. J. Math., 14 (2017), no. 1, art.no 19. https://doi.org/10.1007/s00009-016-0829-y

Downloads

Published

2021-07-23

How to Cite

Hermitian Toeplitz determinants for the class ${\mathcal{S}}$ of univalent functions. (2021). Armenian Journal of Mathematics, 13(4), 1-10. https://doi.org/10.52737/18291163-2021.13.4-1-10