Generalized Rational Evaluation Subgroups of the Inclusion between Complex Projective Spaces

Authors

  • Jean-Baptiste Gatsinzi Botswana International University of Science and Technology

DOI:

https://doi.org/10.52737/18291163-2023.15.9-1-6

Keywords:

Mapping Space, $L_{\infty}$ Algebra, Gottlieb Groups

Abstract

We use a model of mapping spaces to compute the generalized rational Gottlieb groups of the inclusion $i_{n,k}: \mathbb{C}P^n \hookrightarrow \mathbb{C}P^{n+k}$ between complex projective spaces.

References

J. Block and A. Lazarev, André-Quillen cohomology and rational homotopy of function spaces. Adv. Math., 193 (2005), no. 1, pp. 18-39. https://doi.org/10.1016/j.aim.2004.04.014

E. Brown Jr. and R. Szczarba, On the rational homotopy of function spaces. Trans. Amer. Math. Soc., 349 (1997), no. 12, pp. 4931-4951. https://doi.org/10.1090/s0002-9947-97-01871-0

U. Buijs, Y. Félix and A. Murillo, Lie models for the components of sections of a nilpotent fibration. Trans. Amer. Math. Soc., 361 (2009), no. 10, pp.5601-5614. https://doi.org/10.1090/s0002-9947-09-04870-3

U. Buijs, Y. Félix and A. Murillo, $L_∞$ models of based mapping spaces. J. Math. Soc. Japan, 63 (2011), no. 2, pp. 503-524. https://doi.org/10.2969/jmsj/06320503

U. Buijs, Y. Félix and A. Murillo, $L_∞$ rational homotopy of mapping spaces. Rev. Mat. Complut., 26 (2013), no. 2, pp.573-588. https://doi.org/10.1007/s13163-012-0105-z

U. Buijs and A. Murillo, The rational homotopy Lie algebra of function spaces. Comment. Math. Helv., 83 (2008), no. 4, pp. 723-739. https://doi.org/10.4171/cmh/141

Y. Félix, S. Halperin and J.-C. Thomas, Rational Homotopy Theory. Graduate Texts in Mathematics, 205. Springer-Verlag, New-York, 2001. https://doi.org/10.1007/978-1-4613-0105-9

J.-B. Gatsinzi, Rational homotopy type of mapping spaces between complex projective spaces and their evaluation subgroups. Commun. Korean Math. Soc., 37 (2022), pp. 259-267.

D.H. Gottlieb, Evaluation subgroups of homotopy groups. Amer. J. of Math., 91 (1969), pp. 729-756.

A. Haefliger, Rational homotopy of the space of sections of a nilpotent bundle. Trans. Amer. Math. Soc., 273 (1982), no. 2, pp. 609-620. https://doi.org/10.1090/s0002-9947-1982-0667163-8

G. Lupton and S.B. Smith, Rationalized evaluation subgroups of a map I: Sullivan models, derivations and G-sequences. J. Pure Appl. Algebra, 209 (2007), no. 1, pp. 159-171. https://doi.org/10.1016/j.jpaa.2006.05.018

O. Maphane, Evaluation subgroups of a map and the rationalized G-sequence. Armen. J. Math., 14 (2022), no. 2, pp. 1-10. https://doi.org/10.52737/18291163-2022.14.2-1-10

D. Quillen, Homotopical algebra. Lecture Notes in Mathematics, 43, Springer-Verlag, Berlin, 1967.

D. Sullivan, Infinitesimal computations in topology. Publ. I.H.E.S., 47 (1977), pp. 269-331.

Downloads

Published

2023-09-05

How to Cite

Generalized Rational Evaluation Subgroups of the Inclusion between Complex Projective Spaces. (2023). Armenian Journal of Mathematics, 15(9), 1-6. https://doi.org/10.52737/18291163-2023.15.9-1-6