On the Distance Spectrum and Distance-Based Topological Indices of Central Vertex-Edge Join of Three Graphs


  • T. Haritha National Institute of Technology Calicut
  • A.V. Chithra National Institute of Technology Calicut




Distance Matrix, Distance Eigenvalues, Distance Equienergetic Graphs, Topological Indices


In this paper, we introduce a new graph operation based on a central graph called central vertex-edge join (denoted by $G_{n_1}^C \triangleright (G_{n_2}^V\cup G_{n_3}^E)$) and then determine the distance spectrum of $G_{n_1}^C \triangleright (G_{n_2}^V\cup G_{n_3}^E)$ in terms of the adjacency spectra of regular graphs $G_1$, $G_2$ and $G_3$ when $G_1$ is triangle-free. As a consequence of this result, we construct new families of non-D-cospectral D-equienergetic graphs. Moreover, we determine bounds for the distance spectral radius and distance energy of the central vertex-edge join of three regular graphs. In addition, we provide its results related to graph invariants like eccentric-connectivity index, connective eccentricity index, total-eccentricity index, average eccentricity index, Zagreb eccentricity indices, eccentric geometric-arithmetic index, eccentric atom-bond connectivity index, Wiener index. Using these results, we calculate the topological indices of the organic compounds Methylcyclobutane $(C_5H_{10})$ and Spirohexane $(C_6H_{10})$.


G. Aalipour, A. Abiad, Z. Berikkyzy, J. Cummings, D.S. Jessica, W. Gao, K. Heysse, L. Hogben, F.H.J. Kenter, M. Tait, and J.C.H. Lin, On the distance spectra of graphs. Linear Algebra Appl., 497 (2016), pp. 66-87. https://doi.org/10.1016/j.laa.2016.02.018

M. Aouchiche and P. Hansen, Distance spectra of graphs: A survey. Linear Algebra Appl., 458 (2014), pp. 301-386. https://doi.org/10.1016/j.laa.2014.06.010

A.E. Brouwer and W.H. Haemers, Spectra of graphs, Springer: New York, USA, 2012.

F. Buckley and F. Harary, Distance in graphs, 2, Addison-Wesley Redwood City, CA, 1990.

D.M. Cvetković, M. Doob and H. Sachs, Spectra of graphs: Theory and applications, 3rd edition, Johann Ambrosius Barth Verlag, Heidelberg, Leipzig, 1995. https://doi.org/10.1017/s0013091500022902

K.C. Das and I. Gutman, Upper bounds on distance energy. MATCH Commun. Math. Comput. Chem., 86 (2021), pp.611-620.

M.R. Farahani, Eccentricity version of atom-bond connectivity index of benzenoid family ABC5(Hk). World Appl. Sci. J. Chem., 21 (2013), no. 9, pp. 1260-1265.

M. Ghorbani, Connective eccentric index of fullerenes. J. Math. Nanosci., 1 (2011), pp. 43-50.

M. Ghorbani and M.A. Hosseinzadeh, A new version of Zagreb indices. Filomat, 26 (2012), no. 1, pp. 93-100. https://doi.org/10.2298/fil1201093g

M. Ghorbani and A. Khaki, A note on the fourth version of geometric-arithmetic index. Optoelectron. Adv. Mat., 4 (2010), no. 12, pp. 2212-2215.

S. Gupta, M. Singh and A.K. Madan, Connective eccentricity index: A novel topological descriptor for predicting biological activity. J. Mol. Graph. Model., 18 (2000), no. 1, pp. 18-25. https://doi.org/10.1016/s1093-3263(00)00027-9

T. Haritha, and A.V. Chithra, On the distance spectra of central vertex join and central edge join of two regular graphs. Ricerche di Matematica, 2022, 19 pp. https://doi.org/10.1007/s11587-022-00721-5

A. Ilić, Distance spectra and distance energy of integral circulant graphs. Linear Algebra Appl., 433 (2010), no. 5, pp. 1005-1014. https://doi.org/10.1016/j.laa.2010.04.034

G. Indulal, C.S. Deena and X. Liuc, The distance spectrum of the subdivision vertex join and subdivision edge join of two regular graphs. Discrete Math. Lett., 1 (2019), pp. 36-41.

G. Indulal, I. Gutman and A. Vijayakumar, On distance energy of graphs. MATCH Commun. Math. Comput. Chem., 60 (2008), no. 2, pp. 461-472.

T.K. Jahfar and A.V. Chithra, Central vertex join and central edge join of two graphs. AIMS Mathematics, 5 (2020), no. 6, pp. 7214-7233. https://doi.org/10.3934/math.2020461

H.S. Ramane, I. Gutman and D.S. Revankar, Distance equienergetic graphs. MATCH Commun. Math. Comput. Chem., 60 (2008), pp. 473-484.

V. Sharma, R. Goswami and A.K. Madan, Eccentric connectivity index: A novel highly discriminating topological descriptor for structure-property and structure-activity studies. J. Chem. Inf. Comput. Sci., 37 (1997), no. 2, pp. 273-282. https://doi.org/10.1021/ci960049h

V.A. Skorobogatov and A.A. Dobrynin, Metric analysis of graphs. MATCH Commun. Math. Comput. Chem., 23 (1988), no. 1, pp. 105-151.

J.V. Vivin, M.M. Akbar Ali and K. Thilagavathi, On harmonious coloring of central graphs. Advances and Applications in Discrete Mathematics, 2 (2008), no. 1, pp. 17-33.

H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc., 69 (1947), no. 1, pp. 17-20. https://doi.org/10.1021/ja01193a005

B. Zhou and N. Trinajstić, On the largest eigenvalue of the distance matrix of a connected graph. Chem. Phys. Lett., 447 (2007), no. 4-6, pp. 384-387. https://doi.org/10.1016/j.cplett.2007.09.048




How to Cite

On the Distance Spectrum and Distance-Based Topological Indices of Central Vertex-Edge Join of Three Graphs. (2023). Armenian Journal of Mathematics, 15(10), 1-16. https://doi.org/10.52737/18291163-2023.15.10-1-16